Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T07:26:07.199Z Has data issue: false hasContentIssue false

Simultaneous spark plasma synthesis and consolidation of WC/Co composites

Published online by Cambridge University Press:  01 March 2005

Antonio Mario Locci
Affiliation:
Dipartimento di Ingegneria Chimica e Materiali, Centro Studi sulle Reazioni Autopropaganti (CESRA), and Unità di Ricerca del Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali (INSTM), Università degli Studi di Cagliari, 09123 Cagliari, Italy
Roberto Orrù*
Affiliation:
Dipartimento di Ingegneria Chimica e Materiali, Centro Studi sulle Reazioni Autopropaganti (CESRA), and Unità di Ricerca del Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali (INSTM), Università degli Studi di Cagliari, 09123 Cagliari, Italy; and PROMEA Scarl, c/o Dipartimento di Fisica, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy
Giacomo Cao*
Affiliation:
Dipartimento di Ingegneria Chimica e Materiali, Centro Studi sulle Reazioni Autopropaganti (CESRA), and Unità di Ricerca del Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali (INSTM), Università degli Studi di Cagliari, 09123 Cagliari, Italy; and PROMEA Scarl, c/o Dipartimento di Fisica, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy
*
a)Address all correspondence to these authors. e-mail: orru@visnu.dicm.unica.it
b)Address all correspondence to these authors. e-mail: cao@visnu.dicm.unica.it
Get access

Abstract

The single-step synthesis and densification of the WC–6Co cemented carbide starting from elemental powders was obtained by the spark plasma sintering (SPS) technique. The operating conditions that guarantee the complete conversion of the reactants to the desired full dense material have been identified. Specifically, under the application of 800 A and a mechanical pressure of 40 MPa for about 200 s, a product with relative density higher than 99%, hardness of 14.97 ± 0.35 GPa, and 12.5 ± 1.0 MPa m0.5 fracture toughness was obtained. A kinetic investigation of the SPS process was also performed. It revealed that an intermediate phase, i.e., W2C, is the first carbide formed during the carburization process. It was observed that the synthesis and sintering stages take place simultaneously. It was also found that as the applied pulsed current intensity was augmented, the synthesis/sintering time required decreased significantly.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Upadhyaya, G.S.: Cemented Tungsten Carbides: Production, Properties, and Testing (Noyes Publications, Norwich, NY, 1998).Google Scholar
2.Fang, Z.G., Lockwood, G. and Griffo, A.: A dual composite of WC-Co. Metall. Mater. Trans. A 30(12), 3231 (1999).CrossRefGoogle Scholar
3.Upadhyaya, G.S.: Materials science of cemented carbides—An overview. Mater. Des. 22, 483 (2001).CrossRefGoogle Scholar
4.Fu, L., Cao, L.H. and Fan, Y.S.: Two-step synthesis of nanostructured tungsten-carbide-cobalt powders. Scripta Mater. 44, 1061 (2001).CrossRefGoogle Scholar
5.Shao, G-Q., Duan, X-L., Xie, J-R., Yu, X-H., Zhang, W-F. and Yuan, R-Z.: Sintering of nanocrystalline WC–Co composite powder. Rev. Adv. Mater. Sci. 5, 281 (2003).Google Scholar
6.Xueming, M.A. and Gang, J.I.: Nanostructured WC–Co alloy prepared by mechanical alloying. J. Alloys Compd. 245, L30 (1996).CrossRefGoogle Scholar
7.El-Eskandarany, M.S., Omori, M., Ishikuro, M., Konno, T.J., Takada, K., Sumiyama, K., Hirai, T. and Suzuki, K.: Synthesis of full-density nanocrystalline tungsten carbide by reduction of tungstic oxide at room temperature. Metall. Mater. Trans. A 27A, 4210 (1996).CrossRefGoogle Scholar
8.El-Eskandarany, M.S., Mahday, A.A., Ahmed, H.A. and Amer, A.H.: Synthesis and characterization of ball-milled nanocrystalline WC and nanocomposite WC-Co powders and subsequent consolidation. J. Alloys Compd. 312, 315 (2000).CrossRefGoogle Scholar
9.Cha, S.I., Hong, S.H. and Kim, B.K.: Spark plasma sintering behavior of nanocrystalline WC-10Co cemented carbide powders. Mater. Sci. Eng. A A315, 31 (2003).CrossRefGoogle Scholar
10.Zhang, J., Lee, J.H., Maeng, D.Y. and Won, C.W.: Synthesis of tungsten monocarbide by self-propagating high-temperature synthesis in the presence of an activative additive. J. Mater. Sci. 36, 3233 (2001).CrossRefGoogle Scholar
11.Zhu, L.H., Huang, Q.W. and Zhao, H.F.: Preparation of nanocrystalline WC–10Co–0.8VC by spark plasma sintering. J. Mater. Sci. Lett. 22, 1631 (2003).CrossRefGoogle Scholar
12.Tokita, M.: Large-size functionally graded materials fabricated by spark plasma sintering (SPS). Method. Mater. Sci. Forum 423–425,39 (2003).CrossRefGoogle Scholar
13.Park, C-D., Kim, H-C., Shon, I-J. and Munir, Z.A.: One-step synthesis of dense tungsten carbide-cobalt hard materials. J. Am. Ceram. Soc. 85(11), 2670 (2002).Google Scholar
14.Kim, H-C., Oh, D-Y. and Shon, I-J.: Synthesis of WC and dense WC-x vol.%Co hard materials by high-frequency induction heated combustion method. Int. J. Refractory Metals Hard Mater. 22, 41 (2004).CrossRefGoogle Scholar
15.Omori, M.: Sintering, consolidation, reaction and crystal growth by spark plasma sintering (SPS). Mater. Sci. Eng. A 287, 183 (2000).CrossRefGoogle Scholar
16.Kawahara, M., Kim, H-T., and Tokita, M.: Fabrication of nano-materials by spark plasma sintering (SPS) method, in Proc. 2000 Metallurgy World Congress (Japan Society of Powder and Powder Metallurgy, Kyoto, Japan, 2000), p. 741.Google Scholar
17.Orrù, R., Woolman, J., Cao, G. and Munir, Z.A.: The synthesis of dense nanometric MoSi2 through mechanical and field activation. J. Mater. Res. 16, 1439 (2001).CrossRefGoogle Scholar
18.Shen, Z.J., Johnsson, M., Zhao, Z. and Nygren, M.: Spark plasma sintering of alumina. J. Am. Ceram. Soc. 85(8), 1921 (2002).CrossRefGoogle Scholar
19.Rietveld, A.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969).CrossRefGoogle Scholar
20.Lutterotti, L., Ceccato, R., Maschio, R. Dal and Pagani, E.: Quantitative analysis of silicate glass in ceramic materials by the Rietveld method. Mater. Sci. Forum 278–281, 87 (1998).CrossRefGoogle Scholar
21.Anstis, G.R., Chantikul, P., Lawn, B.R. and Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements. J. Am. Ceram. Soc. 64(9), 533 (1981).CrossRefGoogle Scholar
22.McCarty, L.V., Donelson, R. and Hehemann, R.F.: A diffusion model for tungsten powder carburization. Metall. Mater. Trans. A 18A, 969 (1987).CrossRefGoogle Scholar
23.German, R.M.: Liquid Phase Sintering (Plenum Press, New York, 1985).CrossRefGoogle Scholar