Skip to main content Accessibility help

Sintering of hierarchically structured ZnO

  • Markus König (a1), Sören Höhn (a2), Rudolf Hoffmann (a3), Jens Suffner (a1), Stefan Lauterbach (a4), Ludwig Weiler (a1), Olivier Guillon (a1) and Jürgen Rödel (a1)...


Hierarchically structured zinc oxide was prepared from zinc acetylacetonate by a microwave-assisted process. The zinc oxide formed nanoparticles that are packed in substructured spherical agglomerates with a diameter of 0.5 μm. Nitrogen adsorption, x-ray diffraction, and dilatometry were used to investigate the densification. Ion beam method was applied to prepare cross sections and enable microstructural analysis. Three regimes of microstructural evolution were identified on different scales during sintering. In the first regime, nanoparticles changed morphology and densification occurred only in the interiors of the agglomerates. In the second regime, agglomerates became hollow and built necks. Simultaneously, densification set in on the macroscopic scale. A drastic homogenization of the microstructure was observed that marked the beginning of the third regime, where densification and grain growth occurred.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Klingshirn, C.: ZnO: From basics towards applications. Phys. Status Solidi B 244, (9)3027 (2007)
2.Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.J., Morkoc, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, (4)041301 (2005)
3.Clarke, D.R.: Varistor ceramics. J. Am. Ceram. Soc. 82, (3)485 (1999)
4.Eriksson, J., Khranovskyy, V., Söderlind, F., Käll, P-O., Yakimova, R., Spetz, A.L.: ZnO nanoparticles or ZnO films: A comparison of the gas sensing capabilities. Sens. Actuators, B 137, (1)94 (2009)
5.Polarz, S., Roy, A., Lehmann, M., Driess, M., Kruis, F.E., Hoffmann, A., Zimmer, P.: Structure-property-function relationships in nanoscale oxide sensors: A case study based on zinc oxide. Adv. Funct. Mater. 17, (8)1385 (2007)
6.Chopra, K.L., Major, S., Panya, D.K.: Transparent conductors—A status review. Thin Solid Films 102, (1)1 (1983)
7.Ellmer, K., Klein, A., Rech, B.: Transparent Conductive Zinc Oxide Basics and Applications in Thin Film Solar Cells (Springer-Series in Materials Science, Berlin, Germany 2008)
8.Zhou, H-M., Yi, D-Q., Yu, Z-M., Xiao, L-R., Li, J.: Preparation of aluminum doped zinc oxide films and the study of their microstructure, electrical and optical properties. Thin Solid Films 515, (17)6909 (2007)
9.Fortunato, E., Goncalves, A., Pimentel, A., Barquinha, P., Goncalves, G., Pereira, L., Ferreira, I., Martins, R.: Zinc oxide, a multifunctional material: From material to device applications. Appl. Phys. A 96, (1)197 (2009)
10.Schneider, J.J., Hoffmann, R.C., Engstler, J., Soffke, O., Jaegermann, W., Issanin, A., Klyszcz, A.: A printed and flexible field-effect transistor device with nanoscale zinc oxide as active semiconductor material. Adv. Mater. 20, (18)3383 (2008)
11.Meyers, S.T., Anderson, J.T., Hung, C.M., Thompson, J., Wager, J.F., Keszler, D.A.: Aqueous inorganic inks for low-temperature fabrication of ZnO TFTs. J. Am. Chem. Soc. 130, (51)17603 (2008)
12.Inoguchi, M., Suzuki, K., Tanaka, N., Kageyama, K., Takagi, H.: Structural and optical properties of nanocrystalline ZnO thin films derived from clear emulsion of monodispersed ZnO nanocrystals. J. Mater. Res. 24, (9)2243 (2009)
13.Qiu, Y.C., Chen, W., Yang, S.H., Zhang, B., Zhang, X.X., Zhong, Y.C., Wong, K.S.: Hierarchical hollow spheres of ZnO and Zn1−xCoxO: Directed assembly and room-temperature ferromagnetism. Cryst. Growth Des. 10, (1)177 (2009)
14.Aimable, A., Buscaglia, M.T., Buscaglia, V., Bowen, P.: Polymer-assisted precipitation of ZnO nanoparticles with narrow particle size distribution. J. Eur. Ceram. Soc. 30, (2)591 (2010)
15.Gupta, T.K., Coble, R.L.: Sintering of ZnO: I, Densification and grain growth. J. Am. Ceram. Soc. 51, (9)521 (1968)
16.Gupta, T.K., Coble, R.L.: Sintering of ZnO: II, Density decrease and pore growth during final stage of process. J. Am. Ceram. Soc. 51, (9)525 (1968)
17.Whittemore, O.J., Varela, J.A.: Initial sintering of ZnO. J. Am. Ceram. Soc. 64, (11)C154 (1981)
18.Ewsuk, K.G., Ellerby, D.T., DiAntonio, C.B.: Analysis of nanocrystalline and microcrystalline ZnO sintering using master sintering curves. J. Am. Ceram. Soc. 89, (6)2003 (2006)
19.Hynes, A.P., Doremus, R.H., Siegel, R.W.: Sintering and characterization of nanophase zinc oxide. J. Am. Ceram. Soc. 85, (8)1979 (2002)
20.Qin, X.J., Shao, G.J., Liu, R.P., Wang, W.K.: Sintering characteristics of nanocrystalline ZnO. J. Mater. Sci. 40, (18)4943 (2005)
21.Gräf, I.: Ion etching—State of the art and perspectives for contrasting the microstructure of ceramic and metallic materials. Part I: Development and physics in ion etching. Prakt. Metallogr./–Pract. Metallogr. 35, (5)235 (1998)
22.Schneider, J.J., Hoffmann, R.C., Engstler, J., Klyszcz, A., Erdem, E., Jakes, P., Eichel, R-A., Pitta-Bauermann, L., Bill, J.: Synthesis, characterization, defect chemistry, and FET properties of microwave-derived nanoscaled zinc oxide. Chem. Mater. 22, (7)2203 (2010)
23.Langford, J.I., Wilson, A.J.C.: Scherrer after 60 years—Survey and some new results in determination of crystallite size. J. Appl. Crystallogr. 11 (Apr) 102 (1978)
24.Rödel, J., Glaeser, A.M.: High-temperature healing of lithographically introduced cracks in sapphire. J. Am. Ceram. Soc. 73, (3)592 (1990)
25.Louër, D., Vargas, R., Auffrédic, J-P.: Morphological analysis and growth of crystallites during annealing of ZnO. J. Am. Ceram. Soc. 67, (2)136 (1984)
26.Auffrédic, J-P., Boultif, A., Langford, J.I., Louër, D.: Early stages of crystallite growth of ZnO obtained from an oxalate precursor. J. Am. Ceram. Soc. 78, (2)323 (1995)
27.Kang, S-J.L.: Sintering Densification, Grain Growth, and Microstructure (Elsevier Butterworth Heinemann, Oxford, UK 2005)
28.Sudre, O., Lange, F.F.: The effect of inclusions on densification: III, The desintering phenomenon. J. Am. Ceram. Soc. 75, (12)3241 (1992)
29.Lange, F.F.: Sinterability of agglomerated powders. J. Am. Ceram. Soc. 67, (2)83 (1984)
30.Petzow, G., Exner, H.E.: Particle rearrangement in solid state sintering. Z. Metallkd. 67, (9)611 (1976)
31.Exner, H.E., Müller, C.: Particle rearrangement and pore space coarsening during solid-state sintering. J. Am. Ceram. Soc. 92, (7)1384 (2009)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed