Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T15:01:22.958Z Has data issue: false hasContentIssue false

Solid-solution directionally solidified eutectic oxide composites: Part I. Eutectic growth and characterization

Published online by Cambridge University Press:  31 January 2011

L. N. Brewer
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
V. P. Dravid
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
G. Dhalenne
Affiliation:
Laboratoire de Physico-Chimie de l'Etat Solide, Université de Paris-Sud, Orsay, France
M. Velázquez
Affiliation:
Laboratoire de Physico-Chimie de l'Etat Solide, Université de Paris-Sud, Orsay, France
Get access

Abstract

In this work, the solid solution series directionally solidified eutectic, Co1−xNixO/ZrO2(CaO), 0 ≤ x ≤ 1, was examined as a possible model system for interfacial fracture studies. These materials were grown by the optical floating zone method in an image furnace under controlled atmospheres to prevent the formation of Co3O4. For all compositions, lamellar microstructures were produced. The interface plane orientation relationship {111} Co1−xNixO║{100} ZrO2(CaO) was maintained throughout the solid solution series. The phase compositions were close to nominal values with some solubility of CoO in ZrO2(CaO). Preliminary indentation measurements demonstrate the onset of interfacial delamination for compositions of x <0.2.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Hulse, C.O. and Batt, J.A., The Effect of Eutectic Microstructure on the Mechanical Properties of Ceramic Oxides (United Aircraft Research Laboratories, N910803-10, National Technical Information Service, Springfield, VA, 1974).Google Scholar
2Stubican, V.S. and Bradt, R.C., Ann. Rev. Mater. Sci. 11, 267 (1981).CrossRefGoogle Scholar
3Parthasarathy, T.A., Mah, T., and Matson, L.E., Ceram. Eng. Sci. Proc. 11, 1628 (1990).CrossRefGoogle Scholar
4Parthasarathy, T.A., Mah, T., and Matson, L.E., J. Am. Ceram. Soc. 76, 29 (1993).CrossRefGoogle Scholar
5Sayir, A. and Matson, L.E., Growth and Characterization of Directionally Solidified Al2O3/Y3Al5O12 (YAG) Eutectic Fibers, presented at the 4th Annual HITEMP Review, Cleveland, Ohio, 1991.Google Scholar
6Sayir, A., Dickerson, R.M., Yun, H.M., Heidger, S., and Matson, L.E., High Temperature Mechanical Properties of Directionally Solidified Al2O3/Y3Al5O12 (YAG) Eutectic Fibers, presented at the 7th Annual HITEMP Review, Cleveland, Ohio, 1994.Google Scholar
7Waku, Y., Nakagawa, N., Ohtsubo, H., Ohsora, Y., and Kohtoku, Y., J. Jpn. Inst. Metals 59, 71 (1995).CrossRefGoogle Scholar
8Waku, Y., Nakagawa, N., Wakamoto, T., Ohtsubo, H., Shimizu, K., and Kohtoku, Y., J. Mater. Sci. 33, 1217 (1998).CrossRefGoogle Scholar
9Homeny, J. and Nick, J.J., Mater. Sci. Eng. A 127, 123 (1990).CrossRefGoogle Scholar
10Echigoya, J., Takabayashi, Y., Suto, H., and Ishigame, M., J. Mater. Sci. Lett. 5, 150 (1986).CrossRefGoogle Scholar
11Sayir, A. and Farmer, S.C., Acta Mater. 48, 4691 (2000).CrossRefGoogle Scholar
12Yang, J.M., Jeng, S.M., and Chang, S., J. Am. Ceram. Soc. 79, 1218 (1996).CrossRefGoogle Scholar
13Fragneau, M., Revcolevschi, A., and Michel, D., J. Am. Ceram. Soc. 65(7), C102 (1982).CrossRefGoogle Scholar
14Fragneau, M. and Revcolevschi, A., J. Am. Ceram. Soc. 66(9), C162 (1983).CrossRefGoogle Scholar
15Dubois, B., Dhalenne, G., D'Yvoire, F., and Revcolevschi, A., J. Am. Ceram. Soc. 69(1), C6 (1986).CrossRefGoogle Scholar
16Echigoya, J. and Hayashi, S., J. Cryst. Growth 129, 699 (1993).CrossRefGoogle Scholar
17Larrea, A., Orera, V.M., Peña, J.I., and Merino, R.I., J. Mater. Res. 14, 2588 (1999).CrossRefGoogle Scholar
18Orera, V.M., Merino, R.I., Pardo, J.A., Larrea, A., Peña, J.I., Gonzalez, C., and Poza, P., Acta Mater. 48, 4683 (2000).CrossRefGoogle Scholar
19Dhalenne, G. and Revcolevschi, A., J. Cryst. Growth 69, 616 (1984).CrossRefGoogle Scholar
20Revcolevschi, A., Dhalenne, G., and d'Yvoire, F., J. Physique 46, C4441 (1985).Google Scholar
21Revcolevschi, A. and Dhalenne, G., Adv. Mater. 5, 657 (1993).CrossRefGoogle Scholar
22Revcolevschi, A., Dhalenne, G., and Michel, D., Mater. Sci. Forum 29, 173 (1988).CrossRefGoogle Scholar
23Dravid, V.P., Lyman, C.E., Notis, M.R., and Revcoleschi, A., Metall. Trans. A 21A, 2309 (1990).CrossRefGoogle Scholar
24Dickey, E.C., Ph.D. Thesis, Northwestern University, Evanston, IL (1997).Google Scholar
25Dickey, E.C., Dravid, V.P., Nellist, P.D., Wallis, D.J., and Pennycook, S.J., Acta. Mater. 46, 1801 (1998).CrossRefGoogle Scholar
26Lafleurielle, M., Ph.D. Thesis, University of Paris-South IX, Orsay, France (1996).Google Scholar
27, Jade: XRD Pattern Processing (Materials Data Inc., Livermore, CA, 1999).Google Scholar
28Egerton, R.F., Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd ed. (Plenum Press, New York, 1996).CrossRefGoogle Scholar
29Goldstein, J.I., Williams, D.B., and Cliff, G., in Principles of Analytical Electron Microscopy, edited by Romig, A.D. Jr., Joy, D.C., and Goldstein, J.I. (Plenum Press, New York, 1986), pp. 155217.CrossRefGoogle Scholar
30Woodruff, D.P., The Solid Liquid Interface (Cambridge University Press, New York, 1973).Google Scholar
31Minford, W.J., Bradt, R.C., and Stubican, V.S., J. Am. Ceram. Soc. 62(3), 154 (1978).CrossRefGoogle Scholar
32Ownby, P.D., Burt, D.D., and Stewart, D.V., Thermochim. Acta 190, 39 (1991).CrossRefGoogle Scholar
33Stocker, H.J., Ann. Chim. 648, 1459 (1960).Google Scholar
34Smith, K.E., Kershaw, R., Dwight, K., and Wold, A., Mater. Res. Bull. 22, 1125 (1987).CrossRefGoogle Scholar
35Dravid, V.P., Ravikumar, V., Notis, M.R., Dhalenne, G., and Revcolevochi, A., J. Am. Ceram. Soc. 77, 2758 (1994).CrossRefGoogle Scholar
36Brumels, M.D. and Pletka, B.J., J. Am. Ceram. Soc. 70(5), 305 (1987).CrossRefGoogle Scholar
37Dickey, E.C., Dravid, V.P., and Hubbard, C.R., J. Am. Ceram. Soc. 80, 2773 (1997).CrossRefGoogle Scholar
38Dickey, E.C., Frazer, C.S., Watkins, T.R., and Hubbard, C.R., J. Eur. Ceram. Soc. 19, 2503 (1999).CrossRefGoogle Scholar
39He, M.Y., Evans, A.G., and Hutchinson, J.W., Int. J. Solids Struct. 31, 3443 (1994).CrossRefGoogle Scholar
40Castaing, J., Spendel, M., Philibert, J., Dominquez-Martinez, A., and Marquez, R., Rev. Phys. Appl. 15, 277 (1980).CrossRefGoogle Scholar
41Guiberteau, F., Dominguez-Rodriguez, A., Spendel, M., and Castaing, J., Rev. Phys. Appl. 21, 87 (1986).CrossRefGoogle Scholar