Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-03T19:56:19.757Z Has data issue: false hasContentIssue false

Spark plasma sintering of Nd–Fe–B magnetic alloy

Published online by Cambridge University Press:  31 January 2011

Z. G. Liu*
Affiliation:
Department of Production Systems Engineering, Toyohashi University of Technology, 1-1 Tempaku-cho, Toyohashi 441, Japan
M. Umemoto
Affiliation:
Department of Production Systems Engineering, Toyohashi University of Technology, 1-1 Tempaku-cho, Toyohashi 441, Japan
S. Hirosawa
Affiliation:
Sumitomo Special Metals Co. Ltd., 2-15-17 Egawa Shimamoto-cho, Mishima-gun, Osaka 618, Japan
H. Kanekiyo
Affiliation:
Sumitomo Special Metals Co. Ltd., 2-15-17 Egawa Shimamoto-cho, Mishima-gun, Osaka 618, Japan
*
a)Address all correspondence to this author. e-mail: liuzg@umelab-61.tutpse.tut.ac.jp
Get access

Abstract

Spark plasma sintering was used to consolidate the crystallized Nd–Fe–B alloy powders. It was found that a higher sintering temperature can improve the consolidation significantly, whereas it deteriorates the magnetic properties drastically due to the appearance of a large amount of α–Fe phase and the grain growth. Sintering at lower temperature can preserve the magnetic properties better, while the powders cannot be consolidated into a fully dense compact, even under the higher pressure of 75 MPa. Finer starting powder particles show similar behavior.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tokita, M., J. Soc. Powder Metall. Jpn. 30, 790 (1993).Google Scholar
2.Sakamoto, T., J. Jpn. Soc. Powder Powder Metall. 44, 845 (1997).CrossRefGoogle Scholar
3.Ye, L.L., Liu, Z.G., Raviprasad, K., Quan, M.X., Umemoto, M., and Hu, Z. Q., Mater. Sci. Eng. A 241, 290 (1998).CrossRefGoogle Scholar
4.Kondoh, I., Tanaka, T., and Tamari, N., J. Ceram. Soc. Jpn. 102, 505 (1994).CrossRefGoogle Scholar
5.Morrish, A. H., Li, Z. W., Zhou, X.Z., and Dai, S., J. Phys. D: Appl. Phys. 29, 2290 (1996).CrossRefGoogle Scholar
6.Coehoorn, R., De Mooij, D. B., Duchateau, J. P. W. B., and Buschow, K. H., J. Physique Coll. 49C 8, 669 (1988).Google Scholar
7.Shen, B. G., Zhang, J. X., Yang, L. Y., Wo, F., Ning, T. S., Li, S. Q., Zhao, J. G., Guo, H. Q., and Zhan, W. S., J. Magn. Magn. Mater. 89, 195 (1990).CrossRefGoogle Scholar
8.Ragg, O. M., Harris, I. R., Nagel, H., and Bohm, P., IEEE Trans. Magnet. 32, 4395 (1996).CrossRefGoogle Scholar
9.Jurczyk, M., Collocott, S. J., Dunlop, J. B., and Gwan, P.B., J. Phys. D: Appl. Phys. 29, 2284 (1996).CrossRefGoogle Scholar