Skip to main content

Spiky niobium oxide nanoparticles through hydrothermal synthesis

  • Teruaki Fuchigami (a1) and Ken-ichi Kakimoto (a2)

The development of ceramic nanomaterials with unique structure is necessary for discovery of novel property. We developed a novel niobium oxide nanoparticles with a spiky morphology. The spiky structure was composed of two kinds of component: niobium oxide hydrate sphere core and niobium pentoxide nanorods. These spiky niobium oxide nanoparticles are easily synthesized by hydrothermal treatment of niobium oxalate solution at 200 °C for 2 h, and their particle size could be tuned from 80 to 300 nm with 5–10 nm of nanorod on the surface by adjusting niobium concentration in the niobium oxalate solution. The band gap energy of the spiky nanoparticles was around 3.4 eV, and the spiky niobium oxide nanoparticles showed a light absorption in a wide wave length range from 380 to 700 nm. The niobium oxide nanoparticles are applicable as both solid acid catalyst and photocatalyst because of their spiky and two-layer structure.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Nahum Travitzky

Hide All
1. Kumara B. and Kim S.W.: Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy 1, 342355 (2012).
2. Mimura K. and Kato K.: Enhanced dielectric properties of BaTiO3 nanocube assembled film in metal–insulator–metal capacitor structure. Appl. Phys. Express 7, 061501 (2014).
3. Taylor-Pashow K.M.L., Rocca J.D., Huxford R.C., and Lin W.: Hybrid nanomaterials for biomedical applications. Chem. Commun. 46, 58325849 (2010).
4. Lv J., Kako T., Li Z., Zou Z., and Ye J.: Synthesis and photocatalytic activities of NaNbO3 rods modified by In2O3 nanoparticles. J. Phys. Chem. C 114, 61576162 (2010).
5. Uchida S., Inoue Y., Fujishiro Y., and Sato T.: Hydrothermal synthesis of K4Nb6O17 . J. Mater. Sci. 33, 5125 (1998).
6. Lu C.H., Lo S.Y., and Lin H.C.: Hydrothermal synthesis of nonlinear optical potassium niobate ceramic powder. Mater. Lett. 34, 172176 (1998).
7. Liu J.F., Li X.L., and Li Y.D.: Novel synthesis of polymorphous nanocrystalline KNbO3 by a low temperature solution method. J. Nanosci. Nanotechnol. 2, 617 (2002).
8. Lee S., Park T., Choi G., Koo K., and Kim W.: Effects of KOH/BaTi and Ba/Ti ratios on synthesis of BaTiO3 powder by coprecipitation/hydrothermal reaction. Mater. Chem. Phys. 82, 742 (2003).
9. Sehgal A., Lalatonne Y., Berret J-F., and Morvan M.: Precipitation-redispersion of cerium oxide nanoparticles with poly(acrylic acid): Toward stable dispersions. Langmuir 21, 93599364 (2005).
10. Burda C., Chen X.B., Narayaman R., and El-Sayed M.A.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 10251102 (2005).
11. Zhang L. and Zhu Y.J.: Microwave-assisted solvothermal synthesis of AlOOH hierarchically nanostructured microspheres and their transformation to γ-Al2O3 with similar morphologies. J. Phys. Chem. C 112, 16764 (2008).
12. Wang Z.L. and Song J.H.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242 (2006).
13. Polshettiwar V., Baruwati B., and Varma R.S.: Self-assembly of metal oxides into three-dimensional nanostructures: Synthesis and application in catalysis. ACS Nano 3(3), 728736 (2009).
14. Xie X., Li Y., Liu Z-Q., Haruta M., and Shen W.: Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458, 746749 (2011).
15. Wang Y.D., Yang L.F., Zhou Z.L., Li Y.F., and Wu X.H.: Effects of calcination temperature on latice constants and gas sensing properties of Nb2O5 . Mater. Lett. 49, 277 (2001).
16. Carniti P., Gervasini A., and Marzo M.: Dispersed NbO x catalytic phases in silica matrixes: Influence of niobium concentration and preparative route. J. Phys. Chem. C 112, 14064 (2008).
17. Mujawar S.H., Inamdar A.I., Patil S.B., and Patil P.S.: Electrochromic properties of spray-deposited niobium oxide thin films. Solid State Ionics 177, 3333 (2006).
18. Jose R., Thavasi V., and Ramakrishna S.: Metal oxides for dyesensitized solar cells. J. Am. Ceram. Soc. 92, 289 (2009).
19. Ahn K.S., Kang M.S., Lee J.K., Shin B.C., and Lee J.W.: Enhanced electron diffusion length of mesoporous TiO2 film by using Nb2O5 energy barrier for dye-sensitized solar cells. Appl. Phys. Lett. 89, 013103 (2006).
20. Mackey A.C., Karlinsey R.L., Chu T.G., MacPherson M., and Alge D.L.: Development of niobium oxide coatings on sand-blasted titanium alloy dental implants. Mater. Sci. Appl. 3, 301305 (2012).
21. Llordés A., Garcia G., Gazquez J., and Milliron D.J.: Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500, 323326 (2013).
22. Guo Y., Kakimoto K., and Ohsato H.: Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3(Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121 (2004).
23. Saito Y., Takao H., Tani T., Nonoyama T., Takatori K., Homma T., Nagaya T., and Nakamura M.: Lead-free piezoceramics. Nature 432, 8487 (2004).
24. Shrout T.R. and Zhang S.J.: Lead-free piezoelectric ceramics: Alternatives for PZT? J. Electroceram. 19, 113126 (2007).
25. Vats G. and Vaish R.: Selection of optimal sintering temperature of K0.5Na0.5NbO3 ceramics for electromechanical applications. J. Asian Ceram. Soc. 2, 510 (2014).
26. Mohanty D., Chaubey G., Yourdkhani A., Adireddy S., Caruntu G., and Wiley J.: Synthesis and piezoelectric response of cubic and spherical LiNbO3 nanocrystals. RSC Adv. 2, 19131916 (2012).
27. Saito K. and Kudo A.: Niobium-complex-based syntheses of sodium niobate nanowires possessing superior photocatalytic properties. Inorg. Chem. 49, 20172019 (2010).
28. Zhu H., Zheng Z., Gao X., Huang Y., Yan Z., Zou J., Yin H., Zou Q., Kable S.H., Zhao J., Xi Y., Martens W.N., and Frost R.L.: Structural evolution in a hydrothermal reaction between Nb2O5 and NaOH solution: From Nb2O5 grains to microporous Na2Nb2O6/3H2O fibers and NaNbO3 cubes. J. Am. Chem. Soc. 128, 23732384 (2006).
29. Nakajima K., Baba Y., Noma R., Kitano M., Kondo J.N., Hayashi S., and Hara M.: Nb2O5 nH2O as a heterogeneous catalyst with water-tolerant Lewis acid sites. J. Am. Chem. Soc. 133, 42244227 (2011).
30. Prado A.G.S., Bolzon L.B., Pedroso C.P., Moura A.O., and Costa L.L.: Nb2O5 as efficient and recyclable photocatalyst for indigo carmine degradation. Appl. Catal., B 82, 219224 (2008).
31. Wu J., Li J., X., Zhang L., Yao J., Zhang F., Huang F., and Xu F.: A one-pot method to grow pyrochlore H4Nb2O7-octahedron-based photocatalyst. J. Mater. Chem. 20, 19421946 (2010).
32. Luo H., Wei M., and Wei K.: Synthesis of Nb2O5 nanorods by a soft chemical process. J. Nanomater. 2009, 14 (2009).
33. Fan W., Zhang Q., Deng W., and Wang Y.: Niobic acid nanosheets synthesized by a simple hydrothermal method as efficient brønsted acid catalysts. Chem. Mater. 25, 32773287 (2013).
34. Rafique M.Y., Pan L., Khan W.S., Iqbal M.Z., Qiu H., Farooq M.H., Ellahi M., and Guo Z.: Controlled synthesis, phase formation, growth mechanism, and magnetic properties of 3-D CoNi alloy microstructures composed of nanorods. CrystEngComm 15, 53145325 (2013).
35. Yin J., Zhao X., Xiang L., Xia X., and Zhang Z.: Enhanced electrorheology of suspensions containing sea-urchin-like hierarchical Cr-doped titania particles. Soft Matter 5, 46874697 (2009).
36. Ye Y., Chen J., Ding Q., Lin D., Dong R., Yang L., and Liu J.: Sea-urchin-like Fe3O4@C@Ag particles: An efficient SERS substrate for detection of organic pollutants. Nanoscale 5, 58875895 (2013).
37. Camargo E.R. and Kakihana M.: Low temperature synthesis of lithium niobate powders based on water-soluble niobium malato complexes. Solid State Ionics 151, 413418 (2002).
38. Murayama T., Chen J., Hirata J., Matsumoto K., and Ueda W.: Hydrothermal synthesis of octahedra-based layered niobium oxide and its catalytic activity as a solid acid. Catal. Sci. Technol. 4, 42504257 (2014).
39. Fuchigami T. and Kakimoto K.: Synthesis of niobium pentoxide nanoparticles in single flow supercritical water. Jpn. J. Appl. Phys. 55, 10TB06 (2016).
40. Zhao Y., Eley C., Hu J., Foord J.S., Ye L., and He H.: Shapedependent acidity and photocatalytic activity of Nb2O5 nanocrystals with active TT (001) surface. Angew. Chem., Int. Ed. 51, 38463849 (2012).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 7
Total number of PDF views: 44 *
Loading metrics...

Abstract views

Total abstract views: 215 *
Loading metrics...

* Views captured on Cambridge Core between 19th June 2017 - 14th December 2017. This data will be updated every 24 hours.