Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T06:48:29.679Z Has data issue: false hasContentIssue false

Sr(Zn1/3Nb2/3)O3-induced R3c to P4bm transition and large field-induced strain in 0.80(Bi0.5Na0.5)TiO3–0.20SrTiO3 ceramics

Published online by Cambridge University Press:  15 April 2019

Qiumei Wei
Affiliation:
Key Laboratory of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Mankang Zhu*
Affiliation:
Key Laboratory of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Mupeng Zheng
Affiliation:
Key Laboratory of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Yudong Hou*
Affiliation:
Key Laboratory of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
*
a)Address all correspondence to these authors. e-mail: zhumk@bjut.edu.cn
Get access

Abstract

Bi0.5Na0.5TiO3 (BNT)-based lead-free materials are important for piezoelectric actuator, and several researchers have studied the effect of B-site complex ion doping on strain in (Bi0.5Na0.5)TiO3–SrTiO3. In this work, a paraelectric perovskite Sr(Zn1/3Nb2/3)O3 (SZN) with B-site complex structure was introduced into 0.80(Bi0.5Na0.5)TiO3–0.20SrTiO3 (BNTST) to investigate the phase structure and electrical properties as well as the field-induced strain behavior. The results showed that SZN substitution decreases the rhombohedrality 90-γ and induces the transition from dominant ferroelectric to nonergodic relaxor by shifting its TF-R to lower temperatures. Moreover, the field-induced ferroelectric domains cannot remain stable at room temperature when SZN substitution is large than 1.0 mol%. These behaviors induced the transition between nonergodic relaxor and ergodic relaxor, which contributed to its large strain and related properties. In this work, this material gave the largest bipolar strain of 0.43% and large normalized unipolar strain of 505 pm/V at the SZN content of 2 mol% under 8 kV/mm, and showed good temperature stability up to 100 °C. The above encouraging results may be helpful for further investigation of BNTST-based ternary systems in search of a potential Pb-free piezoelectric material.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhu, Y., Zhang, Y., Xie, B., Fan, P., Marwat, M.A., Ma, W., Wang, C., Yang, B., Xiao, J., and Zhang, H.: Large electric field-induced strain in AgNbO3-modified 0.76Bi0.5Na0.5TiO3–0.24SrTiO3 lead-free piezoceramics. Ceram. Int. 44, 7851 (2018).CrossRefGoogle Scholar
Guo, Y., Fan, H., and Shi, J.: Origin of the large strain response in tenary SrTi0.8Zr0.2O3 modified Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 lead-free piezoceramics. J. Mater. Sci. 50, 403 (2015).CrossRefGoogle Scholar
Rödel, J., Webber, K.G., Dittmer, R., Jo, W., Kimura, M., and Damjanovic, D.: Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35, 1659 (2015).CrossRefGoogle Scholar
Muramatsu, H., Nagata, H., and Takenaka, T.: Quenching effects for piezoelectric properties on lead-free (Bi1/2Na1/2)TiO3 ceramics. Jpn. J. Appl. Phys. 55, 10TB07 (2016).CrossRefGoogle Scholar
Wei, Q., Zhu, M., Li, L., Guo, Z., Zheng, M., and Hou, Y.: Large electric field induced strain in new lead-free binary (Bi1/2Na1/2)TiO3–Ba(Zn1/3Nb2/3)O3 solid solution. J. Alloys Compd. 731, 631 (2018).CrossRefGoogle Scholar
Luo, L., Jiang, X., Zhang, Y., and Li, K.: Electrocaloric effect and pyroelectric energy harvesting of (0.94 − x)Na0.5Bi0.5TiO3–0.06BaTiO3xSrTiO3 ceramics. J. Eur. Ceram. Soc. 37, 2803 (2017).CrossRefGoogle Scholar
Chen, J., Wang, Y., Zhang, Y., Yang, Y., and Jin, R.: Giant electric field-induced strain at room temperature in LiNbO3-doped 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3. J. Eur. Ceram. Soc. 37, 2365 (2017).CrossRefGoogle Scholar
Fan, P., Zhang, Y., Xie, B., Zhu, Y., Ma, W., Wang, C., Yang, B., Xu, J., Xiao, J., and Zhang, H.: Large electric-field-induced strain in B-site complex-ion (Fe0.5Nb0.5)4+-doped Bi1/2(Na0.82K0.12)1/2TiO3 lead-free piezoceramics. Ceram. Int. 44, 3211 (2017).CrossRefGoogle Scholar
Goldstein, A., Krell, A., and Kleebe, A.: Transparent ceramics at 50: Progress made and further prospects. J. Am. Ceram. Soc. 99, 3173 (2016).CrossRefGoogle Scholar
Liu, L., Shi, D., Knapp, M., Ehrenberg, H., Fang, L., and Chen, J.: Large strain response based on relaxor-antiferroelectric coherence in (Bi0.5Na0.5)TiO3–SrTiO3–(K0.5Na0.5)NbO3 solid solutions. J. Appl. Phys. 116, 184104 (2014).CrossRefGoogle Scholar
Hiruma, Y., Imai, Y., Watanabe, Y., Nagata, H., and Takenaka, T.: Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3–SrTiO3 ferroelectric ceramics. Appl. Phys. Lett. 92, 262904 (2008).CrossRefGoogle Scholar
Liu, N., Acosta, M., Wang, S., Xu, B.X., Stark, R.W., and Dietz, C.: Revealing the core-shell interactions of a giant strain relaxor ferroelectric 0.75Bi1/2Na1/2TiO3–0.25SrTiO3. Sci. Rep. 6, 36910 (2016).CrossRefGoogle ScholarPubMed
Koruza, J., Rojas, V., Molina-Luna, L., Kunz, U., Duerrschnabel, M., Kleebe, H-J., and Acosta, M.: Formation of the core–shell microstructure in lead-free Bi1/2Na1/2TiO3–SrTiO3 piezoceramics and its influence on the electromechanical properties. J. Eur. Ceram. Soc. 36, 1009 (2016).CrossRefGoogle Scholar
Li, H.L., Liu, Q., Zhou, J.J., Wang, K., Li, J.F., Liu, H., and Fang, J.Z.: Grain size dependent electrostrain in Bi1/2Na1/2TiO3–SrTiO3 incipient piezoceramics. J. Eur. Ceram. Soc. 36, 2849 (2016).CrossRefGoogle Scholar
Tong, X-Y., Li, H-L., Zhou, J-J., Liu, H., and Fang, J-Z.: Giant electrostrain under low driving field in Bi1/2Na1/2TiO3–SrTiO3 ceramics for actuator applications. Ceram. Int. 42, 16153 (2016).CrossRefGoogle Scholar
Cho, J.H., Park, J.S., Kim, S.W., Jeong, Y.H., Yun, J.S., Park, W.I., Hong, Y.W., and Paik, J.H.: Ferroelectric properties and core shell domain structures of Fe-modified 0.77Bi0.5Na0.5TiO3–0.23SrTiO3 ceramics. J. Eur. Ceram. Soc. 37, 3313 (2017).CrossRefGoogle Scholar
Dhifallah, N., Turki, O., Marssi, M.E., Dammak, M., and Khemakhem, H.: Structural and relaxor behavior in lead-free (Ba0.8Sr0.2)Ti1−x(Zn1/3Nb2/3)xO3 ceramics. Ceram. Int. 42, 6657 (2016).CrossRefGoogle Scholar
Malik, R.A., Hussain, A., Zaman, A., Maqbool, A., Rahman, J.U., Song, T.K., Kimc, W-J., and Kim, M-H.: Structure-property relationship in lead-free A- and B-site co-doped Bi0.5(Na0.84K0.16)0.5TiO3–SrTiO3 incipient piezoceramics. RSC Adv. 5, 96953 (2015).CrossRefGoogle Scholar
Hao, J., Li, W., Zhai, J., and Chen, H.: Progress in high-strain perovskite piezoelectric ceramics. Mater. Sci. Eng., R 135, 1 (2019).CrossRefGoogle Scholar
Dorcet, V., Trolliard, G., and Boullay, P.: Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part I: First order rhombohedral to orthorhombic phase transition. Chem. Mater. 20, 5061 (2008).CrossRefGoogle Scholar
Ge, W., Devreugd, C.P., Phelan, D., Zhang, Q., Ahart, M., Li, J., Luo, H., Boatner, L.A., Viehland, D., and Gehring, P.M.: Lead-free and lead-based ABO3 perovskite relaxors with mixed-valence A-site and B-site disorder: Comparative neutron scattering structural study of (Na1/2Bi1/2)TiO3 and Pb(Mg1/3Nb2/3)O3. Phys. Rev. B 88, 174115 (2013).CrossRefGoogle Scholar
Ohwada, K., Hirotal, K., Rehrig, W., Gehring, M., Noheda, B., Fujii, Y., Park, S., and Shirane, G.: Neutron diffraction study of the irreversible R–MA–MC phase transition in single crystal Pb[(Zn1/3Nb2/3)1−xTix]O3. J. Phys. Soc. Jpn. 70, 2778 (2001).CrossRefGoogle Scholar
Eitel, R.E., Zhang, S.J., Shrout, T.R., Randall, C.A., and Levin, I.: Phase diagram of the perovskite system (1 − x)BiScO3xPbTiO3. J. Appl. Phys. 96, 2828 (2004).CrossRefGoogle Scholar
Shi, J., Fan, H., Liu, X., Bell, A.J., and Rödel, J.: Large electrostrictive strain in (Bi0.5Na0.5)TiO3–BaTiO3–(Sr0.7Bi0.2)TiO3 solid solutions. J. Am. Ceram. Soc. 97, 848 (2014).10.1111/jace.12712CrossRefGoogle Scholar
Howard, C.J. and Stokes, H.T.: Octahedral tilting in cation-ordered perovskites—A group-theoretical analysis. Acta Crystallogr., Sect. B: Struct. Sci. 60, 674 (2004).CrossRefGoogle ScholarPubMed
Ma, C., Guo, H., Beckman, S.P., and Tan, X.: Creation and destruction of morphotropic phase boundaries through electrical poling: A case study of lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoelectrics. Phys. Rev. Lett. 109, 107602 (2012).CrossRefGoogle Scholar
Hao, J., Bai, W., Li, W., Shen, B., and Zhai, J.: Phase transitions, relaxor behavior, and large strain response in LiNbO3-modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free piezoceramics. J. Appl. Phys. 114, 113 (2013).CrossRefGoogle Scholar
Otoničar, M., Škapin, S.D., Jančar, B., Ubic, R., and Suvorov, D.: Analysis of the phase transition and the domain structure in K0.5Bi0.5TiO3 perovskite ceramics by in situ XRD and TEM. J. Am. Ceram. Soc. 93, 4168 (2010).CrossRefGoogle Scholar
Dittmer, R., Gobeljic, D., Jo, W., Shvartsman, V.V., Lupascu, D.C., Jones, J.L., and Rödel, J.: Ergodicity reflected in macroscopic and microscopic field-dependent behavior of BNT-based relaxors. J. Appl. Phys. 115, 084111 (2014).CrossRefGoogle Scholar
Lerner, S.E., Mierzwa, M., Paluch, M., Feldman, Y., and Ishai, P.B.: Dielectric relaxation in weakly ergodic dilute dipole systems. J. Chem. Phys. 138, 204501 (2013).CrossRefGoogle ScholarPubMed
Li, L., Zhu, M., Wei, Q., Zheng, M., Hou, Y., and Hao, J.: Ferroelectric P4mm to relaxor P4bm transition and temperature-insensitive large strains in Bi(Mg0.5Ti0.5)O3–modified tetragonal 0.875Bi0.5Na0.5TiO3–0.125BaTiO3 lead-free ferroelectric ceramics. J. Eur. Ceram. Soc. 38, 1381 (2018).CrossRefGoogle Scholar
Rödig, T., Schönecker, A., and Gerlach, G.: A survey on piezoelectric ceramics for generator applications. J. Am. Ceram. Soc. 93, 901 (2010).CrossRefGoogle Scholar
Khan, M.A., Nadeem, M.A., and Idriss, H.: Ferroelectric polarization effect on surface chemistry and photo-catalytic activity: A review. Surf. Sci. Rep. 71, 1 (2016).CrossRefGoogle Scholar
Zhao, W., Zuo, R., Fu, J., and Shi, M.: Large strains accompanying field-induced ergodic phase-polar ordered phase transformations in Bi(Mg0.5Ti0.5)O3–PbTiO3–(Bi0.5Na0.5)TiO3 ternary system. J. Eur. Ceram. Soc. 34, 2299 (2014).CrossRefGoogle Scholar
Viola, G., Mckinnon, R., Koval, V., Adomkevicius, A., Dunn, S., and Yan, H.: Lithium-induced phase transitions in lead-free (Bi0.5Na0.5)TiO3 based ceramics. J. Phys. Chem. C 118, 8564 (2014).CrossRefGoogle Scholar
Han, H.S., Jo, W., Rodel, J., Hong, I.K., Tai, W.P., and Lee, J.S.: Coexistence of ergodicity and nonergodicity in LaFeO3-modified (Bi1/2Na0.78K0.22)1/2TiO3 relaxors. J. Phys.: Condens. Matter 24, 365901 (2012).Google Scholar
Ma, D., Chen, X., Huang, G., Chen, J., Zhou, H., and Fang, L.: Temperature stability, structural evolution and dielectric properties of BaTiO3–Bi(Mg2/3Ta1/3)O3 perovskite ceramics. Ceram. Int. 41, 7157 (2015).CrossRefGoogle Scholar
Karthik, T., Radhakrishanan, D., Narayana, C., and Asthana, S.: Nature of electric field driven ferroelectric phase transition in lead-free (Na1/2Bi1/2)TiO3: In situ temperature dependent ferroelectric hysteresis and Raman scattering studies. J. Alloys Compd. 732, 945 (2018).CrossRefGoogle Scholar
Zheng, T., Wu, J., Xiao, D., and Zhu, J.: Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 98, 552 (2018).CrossRefGoogle Scholar
West, D.L. and Payne, D.A.: Preparation of 0.95Bi1/2Na1/2TiO3·0.05BaTiO3 ceramics by an aqueous citrate-gel route. J. Am. Ceram. Soc. 86, 192 (2003).CrossRefGoogle Scholar
Fu, J. and Zuo, R.: Giant electrostrains accompanying the evolution of a relaxor behavior in Bi(Mg, Ti)O3–PbZrO3–PbTiO3 ferroelectric ceramics. Acta Mater. 61, 3687 (2013).CrossRefGoogle Scholar
Fang, Y-C. and Jean, J-H.: Compositional design of lead-free, low-temperature cofired ceramic dielectric composite. Jpn. J. Appl. Phys. 45, 6357 (2006).CrossRefGoogle Scholar
Lu, D., Dong, Y., Liu, Q., Huang, H., Han, D., Zhang, L., and Meng, L.: Difference of XRD spectrum between ceramic bulk and its powder. J. Jilin Inst. Chem. Technol. 29, 1 (2012).Google Scholar