Skip to main content
    • Aa
    • Aa

Strain relaxation defects in perovskite oxide superlattices

  • Meng Gu (a1), Michael D. Biegalski (a2), Hans M. Christen (a2), Chengyu Song (a3), Craig R. Dearden (a4), Nigel D. Browning (a5) and Yayoi Takamura (a6)...

This paper reports on the defect structures formed upon strain relaxation in pulsed laser-deposited complex oxide superlattices consisting of the ferromagnetic metal, La0.67Sr0.33MnO3, and the antiferromagnetic insulator, La0.67Sr0.33FeO3. Atomic resolution scanning transmission electron microscopy and electron energy loss spectroscopy were used to characterize the structure and chemistry of the defects. For thinner superlattices, strain relaxation occurs through the formation of 2-D stacking faults, whereas for thicker superlattices, the prolonged thermal exposure during film growth leads to the formation of nanoflowers and cracks/pinholes to reduce the overall strain energy.

Corresponding author
b)Address all correspondence to this author. e-mail:
Hide All
1.Ohtomo A. and Hwang H.Y.: A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427(6973), 423 (2004).
2.Takamura Y., Yang F., Kemik N., Arenholz E., Biegalski M.D., and Christen H.M.: Competing interactions in ferromagnetic/antiferromagnetic perovskite superlattices. Phys. Rev. B 80(18), 180417 (2009).
3.Nakagawa N., Hwang H.Y., and Muller D.A.: Why some interfaces cannot be sharp. Nat. Mater. 5(3), 204 (2006).
4.Qiao L., Droubay T.C., Varga T., Bowden M.E., Shutthanandan V., Zhu Z., Kaspar T.C., and Chambers S.A.: Epitaxial growth, structure, and intermixing at the LaAlO3/SrTiO3 interface as the film stoichiometry is varied. Phys. Rev. B 83(8), 085408 (2011).
5.Lee H.N., Christen H.M., Chisholm M.F., Rouleau C.M., and Lowndes D.H.: Strong polarization enhancement in asymmetric three-component ferroelectric superlattices. Nature 433(7024), 395 (2005).
6.Ferguson J.D., Kim Y., Kourkoutis L.F., Vodnick A., Woll A.R., Muller D.A., and Brock J.D.: Epitaxial oxygen getter for a brownmillerite phase transformation in manganite films. Adv. Mater. 23(10), 1226 (2011).
7.Ramirez A.P.: Colossal magnetoresistance. J. Phys. Condens. Matter 9(39), 8171 (1997). Gennes P.G.: Effects of double exchange in magnetic crystals. Phys. Rev. 118(1), 141 (1960).
9.Millis A.J., Littlewood P.B., and Shraiman B.I.: Double exchange alone does not explain the resistivity of La1-xSrxMnO3. Phys. Rev. Lett. 74, 5144 (1995).
10.Goodenough J.B.: Magnetism and Chemical Bond (Interscience, London, 1963), Vol. 1.
11.Yang J.B., Yelon W.B., James W.J., Chu Z., Kornecki M., Xie Y.X., Zhou X.D., Anderson H.U., Joshi A.G., and Malik S.K.: Crystal structure, magnetic properties, and mossbauer studies of La0.6Sr0.4FeO3-δ prepared by quenching in different atmospheres. Phys. Rev. B 66(18), 184415 (2002).
12.Arenholz E., van der Laan G., Yang F., Kemik N., Biegalski M.D., Christen H.M., and Takamura Y.: Magnetic structure of La0.7Sr0.3MnO3/La0.7Sr0.3FeO3 superlattices. Appl. Phys. Lett. 94(7), 072503 (2009).
13.Yang F., Kemik N., Scholl A., Doran A., Young A.T., Biegalski M.D., Christen H.M., and Takamura Y.: Correlated domain structure in perovskite oxide superlattices exhibiting spin-flop coupling. Phys. Rev. B 83(1), 014417 (2011).
14.Erni R., Rossell M.D., Kisielowski C., and Dahmen U.: Atomic-resolution imaging with a sub-50-pm electron probe. Phys. Rev. Lett. 102(9), 096101 (2009).
15.Koch C.: Determination of core structure periodicity and point defect density along dislocations. Ph.D Thesis, Arizona State University, 2002.
16.Arenholz E. and Prestemon S.O.: Design and performance of an eight-pole resistive magnet for soft x-ray magnetic dichroism measurements. Rev. Sci. Instrum. 76(8), 083908 (2005).
17.Kemik N., Gu M., Yang F., Chang C.-Y., Song D., Bibee M., Mehta A., Biegalski M.D., Christen H.M., Browning N.D., and Takamura Y.: Resonant x-ray reflectivity study of perovskite oxide superlattices. Appl. Phys. Lett. 99, 201908 (2011).
18.Shannon R.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 32(5), 751 (1976).
19.Fischer A.M., Wu Z., Sun K., Wei Q., Huang Y., Senda R., Iida D., Iwaya M., Amano H., and Ponce F.A.: Misfit strain relaxation by stacking fault generation in InGaN quantum wells grown on m-plane GaN. Appl. Phys. Express 2, 041002/1 (2009).
20.Schmid H.K. and Mader W.: Oxidation states of Mn and Fe in various compound oxide systems. Micron 37(5), 426 (2006).
21.Riedl T., Gemming T., and Wetzig K.: Extraction of EELS white-line intensities of manganese compounds: Methods, accuracy, and valence sensitivity. Ultramicroscopy 106, 284 (2006).
22.Muller D.A.: Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat. Mater. 8(4), 263 (2009).
23.Shah A.B., Ramasse Q.M., Wen J.G., Bhattacharya A., and Zuo J.M.: Practical spatial resolution of electron energy loss spectroscopy in aberration-corrected scanning transmission electron microscopy. Micron 42(6), 539 (2011).
24.Siwach P.K., Singh H.K., Srivastava O.N.: Influence of strain relaxation on magnetotransport properties of epitaxial La0.7Ca0.3MnO3 films. J. Phys. Condens. Matter 18(43), 9783 (2006).
25.He J.Q., Klie R.F., Logvenov G., Bozovic I., and Zhu Y.M.: Microstructure and possible strain relaxation mechanisms of La2CuO4+δ thin films grown on LaSrAlO4 and SrTiO3 substrates. J. Appl. Phys. 101(7), 073906 (2007).
26.Matthews J.W. and Blakeslee A.E.: Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118 (1974).
27.Peng L.S.J., Xi X.X., Moeckly B.H., and Alpay S.P.: Strain relaxation during in situ growth of SrTiO3 thin films. Appl. Phys. Lett. 83, 4592 (2003).
28.Tersoff J. and LeGoues F.K.: Competing relaxation mechanisms in strained layers. Phys. Rev. Lett. 72(22), 3570 (1994).
29.Loane R.F., Kirkland E.J., and Silcox J.: Visibility of single heavy atoms on thin crystalline silicon in simulated annular dark-field STEM images. Acta Crystallogr., Sect. A 44(6), 912 (1988).
30.Mastrikov Y., Heifets E., Kotomin E., and Maier J.: Atomic, electronic and thermodynamic properties of cubic and orthorhombic LaMnO3 surfaces. Surf. Sci. 603(2), 326 (2009). Groot F.M.F.: X-ray absorption and dichroism of transition metals and their compounds. J. Electron. Spectrosc. Relat. Phenom. 67(4), 529 (1994).
32.Huijben M., Martin L.W., Chu Y.H., Holcomb M.B., Yu P., Rijnders G., Blank D.H.A., and Ramesh R.: Critical thickness and orbital ordering in ultrathin La0.7Sr0.3MnO3 films. Phys. Rev. B 78(9), 094413 (2008).
33.Takamura Y., Chopdekar R.V., Arenholz E., and Suzuki Y.: Control of the magnetic and magnetotransport properties of La0.67Sr0.33MnO3 thin films through epitaxial strain. Appl. Phys. Lett. 92(16), 162504 (2008).
34.Konishi Y., Fang Z., Izumi M., Manako T., Kasai M., Kuwahara H., Kawasaki M., Terakura K., and Tokura Y.: Orbital-state-mediated phase-control of manganites. J. Phys. Soc. Jpn. 68, 3790 (1999).
35.Moreno C., Abellán P., Hassini A., Ruyter A., del Pino A.P., Sandiumenge F., Casanove M.-J., Santiso J., Puig T., and Obradors X.: Spontaneous outcropping of self-assembled insulating nanodots in solution-derived metallic ferromagnetic La0.7Sr0.3MnO3 films. Adv. Funct. Mater. 19(13), 2139 (2009).
36.Yang F., Kemik N., egalski M.D., Christen H.M., Arenholz E., and Takamura Y.: Strain engineering to control the magnetic and magnetotransport properties of La0.67Sr0.33MnO3 thin films. Appl. Phys. Lett. 97,092503/1 (2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary Materials

Gu et al. supplementary material

 Word (3.6 MB)
3.6 MB


Full text views

Total number of HTML views: 4
Total number of PDF views: 25 *
Loading metrics...

Abstract views

Total abstract views: 167 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.