Skip to main content Accessibility help

The strain-rate dependence of the nanoindentation stress of gold at 300 K: A deformation kinetics-based approach

  • Vineet Bhakhri (a1) and Robert J. Klassen (a1)


Indentation tests involving a constant-loading rate stage followed by a constant-load stage were performed on annealed and 20% cold-worked Au to investigate the effect of indentation depth and initial dislocation density on the indentation deformation process. The indentation strain rate data were analyzed in terms of an obstacle-limited dislocation glide mechanism. The apparent activation energy was of the order of 0.16 μb3 and was neither a function of initial indentation depth nor cold work. The results of Haasen plot activation analysis and direct transmission electron microscopy (TEM) observations indicate that more mechanical work must be applied during the constant-loading rate stage due to the large amount of work hardening compared with the constant-load stage where considerably more dislocation recovery occurs.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1Schuh, C.A.: Nanoindentation studies of materials. Mater. Today 9,(5) 32 (2006).
2Greer, J.R.Oliver, W.C. and Nix, W.D.: Size effects in mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).
3Greer, J.R.: Bridging the gap between computational and experimental length scales: A review on nano-scale plasticity. Rev. Adv. Mater. Sci. 13, 59 (2006).
4Shan, Z.W.Mishra, R.K.Asif, S.A. Syed, Warren, O.L. and Minor, A.M.: Mechanical annealing and source-limited deformation in submicrometer-diameter nickel crystals. Nat. Mater. 7, 115 (2008).
5Gane, N. and Cox, J.M.: Micro-hardness of metals at very low loads. Philos. Mag. 22, 881 (1970).
6Samuels, L.E.: Microindetation Techniques in Materials Science and Engineering, edited by Blau, P.J. and Lawn, B.R. (ASTM STP, 1984), p. 5.
7Sargent, P.M.: Microindetation Techniques in Materials Science and Engineering, edited by Blau, P.J. and Lawn, B.R. (ASTM STP, 1984), p. 160.
8Guzman, M.S. De, Neubauer, G.Flinn, P. and Nix, W.D.: Role of indentation depth on the measured hardness of materials, in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P.H.Weihs, T.P.Sanchez, J.E. Jr and Borgesen, P. (Mater. Res. Symp. Proc. 308, Pittsburgh, PA, 1993), p. 613.
9Ma, Q. and Clark, D.R.: Size dependent hardness of silver single crystals. J. Mater. Res. 10, 853 (1995).
10Poole, W.J.Ashby, M.F. and Fleck, N.A.: Micro-hardness of annealed and work-hardened copper polycrystals. Scr. Metall. Mater. 34, 559 (1996).
11Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).
12Gao, H.Haung, Y.Nix, W.D. and Hutchinson, J.W.: Mechanism-based strain gradient plasticity-I. Theory. J. Mech. Phys. Solids 48, 99 (1999).
13Stelmashenko, N.A.Walls, M.G.Brown, L.M. and Millman, Y.V.: Microindentations on W and Mo oriented single crystals: An STM study. Acta Metall. Mater. 41, 2855 (1993).
14Fleck, N.A.Muller, M.G.Ashby, M.F. and Hutchinson, J.W.: Strain gradient plasticity: Theory and experiment. Acta Metall. Mater. 42, 475 (1994).
15Elmustafa, A.A.Eastman, J.A.Rittner, M.N.Weertman, J.R. and Stone, D.S.: Indentation size effect: Large grained aluminum versus nanocrystalline aluminum-zirconium alloys. Scr. Mater. 43, 951 (2000).
16Feng, G. and Nix, W.D.: Indentation size effect in MgO. Scr. Mater. 51, 599 (2004).
17Huang, Y.Zhang, F.Hwang, K.C.Nix, W.D.Pharr, G.M. and Feng, G.: A model of size effects in nano-indentation. J. Mech. Phys. Solids 54, 1668 (2006).
18Stone, D.S. and Yoder, K.B.: Division of the hardness of molybdenum into rate-dependent and rate-independent components. J. Mater. Res. 9, 2524 (1994).
19Tambwe, M.F.Stone, D.S.Grffin, A.J.Kung, H.Lu, Y.C. and Natasi, M.: Haasen plot analysis of the Hall-Petch effect in Cu/Nb nanolayer composites. J. Mater. Res. 14, 407 (1999).
20Klassen, R.J.Diak, B.J. and Saimoto, S.: Origin of the depth dependence of the apparent activation volume in polycrystalline 99.999% Cu determined by displacement rate change micro-indentation. Mater. Sci. Eng., A 387-389, 297 (2004).
21Li, H. and Ngan, A.H.W.: Size effects of nanoindentation creep. J. Mater. Res. 19, 513 (2004).
22Elmustafa, A.A. and Stone, D.S.: Nanoindentation and the indentation size effect: Kinetics of deformation and strain gradient plasticity. J. Mech. Phys. Solids 51, 357 (2002).
23Bhakhri, V. and Klassen, R.J.: The depth dependence of the indentation creep of polycrystalline gold at 300 K. Scr. Mater. 55, 395 (2006).
24Li, W.B.Henshall, J.L.Hooper, R.M. and Easterling, K.E.: Mechanisms of indentation creep. Acta Metall. Mater. 39, 3099 (1991).
25Bhakhri, V. and Klassen, R.J.: Investigation of high-temperature plastic deformation using instrumented microindentation tests. Part II: The deformation of Al-based participate reinforced composites at 473 K to 833 K. J. Mater. Sci. 41, 2249 (2006).
26Bhakhri, V. and Klassen, R.J.: Investigation of high-temperature plastic deformation using instrumented microindentation tests. Part I: The deformation of three aluminum alloys at 473 K to 833 K. J. Mater. Sci. 41, 2259 (2006).
27Bahr, D.F.Kramer, D.E. and Gerberich, W.W.: Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46, 3605 (1998).
28Tymiak, N.I.Kramer, D.E.Bahr, D.F.Wyrobek, T.J. and Gerberich, W.W.: Plastic strain and strain gradients at very small indentation depths. Acta Mater. 49, 1021 (2001).
29Goodal, R. and Clyne, T.W.: A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater. 54, 5489 (2006).
30Wang, F. and Kewei, X.: An investigation of nanoindentation creep in polycrystalline Cu thin film. Mater. Lett. 58, 2345 (2004).
31Oliver, W.C. and Pharr, G.M.: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1654 (1992).
32McElhaney, K.W.Vlassak, J.J. and Nix, W.D.: Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J. Mater. Res. 13, 1300 (1998).
33Zong, Z.Lou, J.Adewoye, O.O.Elmustafa, A.A.Hammad, F. and Soboyejo, W.O.: Indentation size effects in the nano- and micro-hardness of fcc single crystal metals. Mater. Sci. Eng., A 434, 178 (2006).
34Kocks, U.F.Argon, A.S. and Ashby, M.F.: Thermodynamics and kinetics of slip. Prog. Mater. Sci. 19, 1 (1975).
35Frost, H.J. and Ashby, M.F.: Deformation-Mechanism Maps (Pergamon Press, Oxford, 1982), p. 21.
36Samuels, L.E. and Mulhearn, T.O.: An experimental investigation of the deformed zone associated with indentation hardness impressions. J. Mech. Phys. Solids 5, 125 (1957).
37Atkins, A.G. and Tabor, D.: Plastic indentations in metals with cones. J. Mech. Phys. Solids 13, 149 (1965).
38Xu, G. and Argon, A.: Homogeneous nucleation of dislocation loops under stress in perfect crystals. Philos. Mag. Lett. 80, 605 (2000).
39Schuh, C.A.Mason, J.K. and Lund, A.C.: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater 4, 617 (2005).
40Mason, J.K.Lund, A.C. and Schuh, C.A.: Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys. Rev. B: Condens. Matter 73, 054102 (2006).
41Mulford, R.A.: Analysis of strengthening mechanisms in alloys by means of thermal-activation theory. Acta Metall. 27, 1115 (1979).
42Mecking, H. and Kocks, U.F.: Kinetics of flow and strain-hardening. Acta Metall. 29, 1865 (1981).
43Siamoto, S. and Sang, H.: Re-examination of the Cottrell-Stokes relation based on precision measurements of the activation volume. Acta Metall. 31, 1873 (1983).
44Bochniak, W.: Cottrell-Stokes law for f.c.c. single crystals. Acta Metall. 41, 3133 (1993).
45Page, T.F.Oliver, W.C. and McHargue, C.J.: The deformation behaviour of ceramic crystals subjected to very low load (nano) indetations. J. Mater. Res. 7, 450 (1992).
46Zelinski, W.Huang, H. and Gerberich, W.W.: Microscopy and microindentation mechanics of single crystal Fe-3wt% Si: Part II. TEM of indentation plastic zone. J. Mater. Res. 8, 1300 (1993).
47Zelinski, W.Huang, H.Venkataraman, S. and Gerberich, W.W.: Dislocation distribution under a microindentation into an iron-silicon single crystal. Philos. Mag. A 72, 1221 (1995).
48Kiener, D.Pippan, R.Motz, C. and Kreuzer, H.: Microstructural evolution of the deformed volume beneath microindents in tungsten and copper. Acta Mater. 54, 2801 (2006).
49Wang, Y.Raabe, D.Kluber, C. and Roters, F.: Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals. Acta Mater. 52, 2229 (2004).
50Rester, R.Motz, C. and Pippan, R.: Microstructural investigation of the volume beneath nanoindentations in copper. Acta Mater. 55, 6427 (2007).


The strain-rate dependence of the nanoindentation stress of gold at 300 K: A deformation kinetics-based approach

  • Vineet Bhakhri (a1) and Robert J. Klassen (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed