Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 3
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Jiang, Yurong Li, Chen Cao, Weiwei Jiang, Yanrong Shang, Shuying and Xia, Congxin 2015. Large scale fabrication of well-aligned CdS/p-Si shell/core nanowire arrays for photodetectors using solution methods. Phys. Chem. Chem. Phys., Vol. 17, Issue. 26, p. 16784.

    Chan, Yu Fei Xu, Hai Jun Cao, Lei Tang, Ying Li, De Yao and Sun, Xiao Ming 2012. ZnO∕Si arrays decorated by Au nanoparticles for surface-enhanced Raman scattering study. Journal of Applied Physics, Vol. 111, Issue. 3, p. 033104.

    Chan, Yu Fei Su, Wei Zhang, Chang Xing Wu, Zheng Long Tang, Ying Sun, Xiao Qi and Xu, Hai Jun 2012. Electroluminescence from ZnO-nanofilm/Si-micropillar heterostructure arrays. Optics Express, Vol. 20, Issue. 22, p. 24280.


Structural and multiband photoluminescent properties of a hierarchical ZnO/Si nanoheterostructure

  • Hai Jun Xu (a1), Lei Su (a1), Yu Fei Chan (a1) and Xiao Ming Sun (a1)
  • DOI:
  • Published online: 26 April 2011

Hierarchical ZnO/Si nanoheterostructure was prepared by growing oriented ZnO nanowire bundles onto the top of nanoporous silicon pillar array (NSPA) via a self-catalytic thermal evaporation and vapor-phase transport method. Samples were carefully characterized using field emission scanning electron microscopy, x-ray diffraction, and luminescence spectroscopy. One ultraviolet, one blue-green, and two red emission bands were observed in ZnO/NSPA, and the emission mechanism is discussed by developing a model-based energy band diagram. The origins of the ultraviolet and blue-green photoluminescence (PL) bands were attributed to the emission from the band edge transition and surface states of oxygen vacancies of ZnO, while two red PL bands originated from NSPA and could be well explained by the quantum confinement-luminescence center model. The realization of such all solid and wide wavelength nanodevice might be both meaningful for developing new concept lighting devices and potentially extended to fabricate hierarchical Si-based nanoheterostructures in fabricating other optoelectronic nanodevices.

Corresponding author
a)Address all correspondence to this author. e-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.S. Rohrmoser , J. Baldauf , R.T. Harley , P.G. Lagoudakis , S. Sapra , and A. Eychmuller : Temperature dependence of exciton transfer in hybrid quantum well/nanocrystal heterostructures. Appl. Phys. Lett. 91, 092126 (2007).

2.J. Xiang , W. Lu , Y. Hu , Y. Wu , H. Yan , and C.M. Lieber : Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489 (2006).

3.P. Rauter , T. Fromherz , N.Q. Vinh , B.N. Murdin , G. Mussler , D. Grutzmacher , and G. Bauer : Continuous voltage tunability of intersubband relaxation times in coupled SiGe quantum well structures using ultrafast spectroscopy. Phys. Rev. Lett. 102, 147401 (2009).

4.H. Long , G. Fang , H. Huang , X. Mo , W. Xia , B. Dong , X. Meng , and X. Zhao : Ultraviolet electroluminescence from ZnO/NiO-based heterojunction light-emitting diodes. Appl. Phys. Lett. 95, 013509 (2009).

5.M. Tzolov , B. Chang , A. Yin , D. Straus , J.M. Xu , and G. Brown : Electronic transport in a controllably grown carbon nanotube-silicon heterojunction array. Phys. Rev. Lett. 92, 075505 (2004).

6.W. Yi , V. Narayanamurti , H. Lu , M.A. Scarpulla , and C. Gossard : Probing semiconductor band structures and heterojunction interface properties with ballistic carrier emission: GaAs/AlxGa1−xAs as a model system. Phys. Rev. B 81, 235325 (2010).

7.M.C. Jeong , B.Y. Oh , M.H. Ham , S.W. Lee , and J.M. Myoung : ZnO-nanowire-inserted GaN/ZnO heterojunction light-emitting diodes. Small 3, 568 (2007).

8.Y. Tak , J. Hong , J.S. Lee , and K. Yong : Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J. Mater. Chem. 19, 5945 (2009).

9.Y. Hsieh , H. Chen , M. Lin , S. Shiu , M. Hofmann , M. Chern , X. Jia , Y. Yang , H. Chang , H. Huang , S. Tseng , L. Chen , K. Chen , C. Lin , C. Liang , and Y. Chen : Electroluminescence from ZnO/Si-nanotips light-emitting diodes. Nano Lett. 9, 1839 (2009).

10.M. Willander , O. Nur , N. Bano , and K. Sultana : Zinc oxide nanorod-based heterostructures on solid and soft substrates for white-light-emitting diode applications. N. J. Phys. 11, 125020 (2009).

11.Y.M. Chang , S.R. Jian , H.Y. Lee , C.M. Lin , and J.Y. Juang : Enhanced visible photoluminescence from ultrathin ZnO films grown on Si-nanowires by atomic layer deposition. Nanotechnology 21, 385705 (2010).

12.H.J. Xu and X.J. Li : Silicon nanoporous pillar array: A silicon hierarchical structure with high light absorption and triple-band photoluminescence. Opt. Express 16, 2933 (2008).

13.H.J. Xu and X.J. Li : Preparation, structural and photoluminescent properties of CdS/silicon nanoporous pillar array. J. Phys. Condens. Matter 19, 056003 (2007).

14.H.J. Xu and X.J. Li : Rectification effect and electron transport property of CdS/Si nanoheterostructure based on silicon nanoporous pillar array. Appl. Phys. Lett. 93, 172105 (2008).

15.X. Yan , B.K. Tay , and P. Miele : Field emission from ordered carbon nanotube-ZnO heterojunction arrays. Carbon 46, 753 (2008).

16.Z. Fan , D.J. Ruebusch , A.J. Rathore , R. Kapadia , O. Ergen , P.W. Leu , and A. Javey : Challenges and prospects of nanopillar based solar cells. Nano Res. 2, 829 (2009).

17.C.S. Ku , J.M. Huang , C.Y. Cheng , C.M. Lin , and H.Y. Lee : Annealing effect on the optical response and interdiffusion of n-ZnO/p-Si (111) heterojunction grown by atomic layer deposition. Appl. Phys. Lett. 97, 181915 (2010).

18.V.A. Fonoberov , K.A. Alim , A.A. Balandin , F.X. Xiu , and J.L. Liu : Competition between exciton-phonon interaction and defects states in the 3.31 eV band in ZnO. Phys. Rev. B. 73, 165317 (2006).

19.C. Li , G.J. Fang , G.H. Su , G.H. Li , X.G. Wu , and X.Z. Zhao : Synthesis and photoluminescence properties of vertically aligned ZnO nanorod-nanowall junction arrays on a ZnO-coated silicon substrate. Nanotechnology 17, 3740 (2006).

20.P.H. Kasai : Electron spin resonance studies of donors and acceptors in ZnO. Phys. Rev. 130, 989 (1963).

21.A.V. Dijken , E.A. Meulenkamp , D. Vanmaekelbergh , and A. Meijerink : The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation. J. Phys. Chem. B 104, 1715 (2000).

22.Y.L. Liu , Y.C. Liu , H. Yang , W.B. Wang , J.G. Ma , J.Y. Zhang , Y.M. Lu , D.Z. Shen , and X.W. Fan : The optical properties of ZnO films grown on porous Si templates. J. Phys. D Appl. Phys. 36, 2705 (2003).

23.R.G. Singh , F. Singh , D. Kanjilal , V. Agarwal , and R.M. Mehra : White light emission from chemically synthesized ZnO–porous silicon nanocomposite. J. Phys. D Appl. Phys. 42, 062002 (2009).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *