Skip to main content Accessibility help
×
×
Home

Structural commonalities and deviations in the hierarchical organization of crossed-lamellar shells: A case study on the shell of the bivalve Glycymeris glycymeris

  • Corinna F. Böhm (a1), Benedikt Demmert (a1), Joe Harris (a1), Tobias Fey (a1), Frédéric Marin (a2) and Stephan E. Wolf (a3)...
Abstract

The structural organization of the palliostracum—the dominant part of the shell which is formed by the mantle cells—of Glycymeris glycymeris (Linné 1758) is comprised of five hierarchical levels with pronounced structural commonalities and deviations from other crossed-lamellar shells. The hierarchical level known as second order lamellae, present within other crossed-lamellar shells, is absent highlighting a short-coming of the currently used nomenclature. On the mesoscale, secondary microtubules penetrate the palliostracum and serve as crack arrestors. Moreover, the growth lamellae follow bent trajectories possibly impacting crack propagation, crack deflection, and energy dissipation mechanisms whilst circumventing delamination. Finally, at least two structural elements are related to external circatidal and circaanular stimuli. This emphasizes that endogeneous rhythms may contribute and (co-)control the self-organization of a complex mineralized tissue and that it is insufficient to rely fully on a reductionistic approach when studying biomineralization.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: stephan.e.wolf@fau.de
References
Hide All
1. Wegst, U.G.K., Bai, H., Saiz, E., Tomsia, A.P., and Ritchie, R.O.: Bioinspired structural materials. Nat. Mater. 14, 2336 (2014).
2. Wolf, S.E., Böhm, C., Harris, J., Hajir, M., Mondeshki, M., and Marin, F.: Single nanogranules preserve intracrystalline amorphicity in biominerals. Key Eng. Mater. 672, 4759 (2015).
3. Tai, K., Ulm, F.J., and Ortiz, C.: Nanogranular origins of the strength of bone. Nano Lett. 6, 25202525 (2006).
4. Li, X., Xu, Z-H., and Wang, R.: In situ observation of nanograin rotation and deformation in nacre. Nano Lett. 6, 23012304 (2006).
5. Gao, H., Ji, B., Jager, I.L., Arzt, E., and Fratzl, P.: Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Natl. Acad. Sci. U. S. A. 100, 55975600 (2003).
6. Jacob, D.E., Soldati, A., Wirth, R., Huth, J., Wehrmeister, U., and Hofmeister, W.: Nanostructure, composition and mechanisms of bivalve shell growth. Geochim. Cosmochim. Acta 72, 54015415 (2008).
7. Huang, Z. and Li, X.: Origin of flaw-tolerance in nacre. Sci. Rep. 3, 1693 (2013).
8. Barthelat, F., Li, C., Comi, C., and Espinosa, H.D.: Mechanical properties of nacre constituents and their impact on mechanical performance. J. Mater. Res. 21, 19771986 (2006).
9. Checa, A.G., Cartwright, J.H.E., and Willinger, M-G.: The key role of the surface membrane in why gastropod nacre grows in towers. Proc. Natl. Acad. Sci. U. S. A. 106, 3843 (2009).
10. Cartwright, J.H.E. and Checa, A.G.: The dynamics of nacre self-assembly. J. R. Soc., Interface 4, 491504 (2007).
11. Currey, J.D. and Taylor, J.D.: The mechanical behaviour of some molluscan hard tissues. J. Zool. 173, 395406 (1974).
12. Burghard, Z., Zini, L., Srot, V., Bellina, P., Van Aken, P.A., and Bill, J.: Toughening through nature-adapted nanoscale design. Nano Lett. 9, 41034108 (2009).
13. Kamat, S., Su, X., Ballarini, R., and Heuer, A.H.: Structural basis for the fracture toughness of the shell of the conch Strombus gigas . Nature 405, 10361040 (2000).
14. Kuhn-Spearing, L.T., Kessler, H., Chateau, E., Ballarini, R., Heuer, A.H., and Spearing, S.M.: Fracture mechanisms of the Strombus gigas conch shell: implications for the design of brittle laminates. J. Mater. Sci. 31, 65836594 (1996).
15. Pokroy, B. and Zolotoyabko, E.: Microstructure of natural plywood-like ceramics: a study by high-resolution electron microscopy and energy-variable X-ray diffraction. J. Mater. Chem. 13, 682688 (2003).
16. Weiner, S., Addadi, L., and Wagner, H.D.: Materials design in biology. Mater. Sci. Eng., C 11, 18 (2000).
17. Fleischli, F.D., Dietiker, M., Borgia, C., and Spolenak, R.: The influence of internal length scales on mechanical properties in natural nanocomposites: a comparative study on inner layers of seashells. Acta Biomater. 4, 16941706 (2008).
18. Yang, W., Zhang, G., Liu, H., and Li, X.: Microstructural Characterization and Hardness Behavior of a Biological Saxidomus purpuratus Shell. J. Mater. Sci. Technol. 27, 139146 (2011).
19. Oliver, P.G. and Holmes, A.M.: The Arcoidea (Mollusca: Bivalvia): a review of the current phenetic-based systematics. Zool. J. Linn. Soc. 148, 237251 (2006).
20. Oberling, J.J.: Observations on some structural features of the pelecypod shell. Mitt. Naturforsch. Ges. Bern Neue Folge 20, 163 (1962).
21. Dame, R.: Ecology of Marine Bivalves: An Ecosystem Approach (CRC Press, Boca Raton, 1996).
22. Morvan, C.: Cycle de reproduction et fécondité de deux espéces de bivalves dans le golfe Normand-Breton. Ph.D Thesis, Université de Bretagne Occidentale, 1987.
23. Taylor, J.D., Kennedy, W.J., and Hall, A.: The shell structure and mineralogy of the Bivalvia. Nuculacea—Trigonacea. Bull. Br. Mus. 3, 1125 (1969).
24. Yahyazadehfar, M., Bajaj, D., and Arola, D.D.: Hidden contributions of the enamel rods on the fracture resistance of human teeth. Acta Biomater. 9, 48064814 (2013).
25. Cuif, J-P., Dauphin, Y., and Sorauf, J.E.: Biominerals and Fossils Through Time (Cambridge University Press, New York, 2011).
26. Clark, G.R.: Growth Lines in Invertebrate Skeletons. Annu. Rev. Earth Planet. Sci. 2, 7799 (1974).
27. Rhoads, D.C. and Lutz, R.A.. Growth Patterns within the Molluscan Shell: An overview. In Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change, Rhoads, D.C. and Lutz, R.A., eds. (Plenum Press: New York, 1980); pp. 203255.
28. Jackson, A.P., Vincent, J.F.V., and Turner, R.M.: Comparison of nacre with other ceramic composites. J. Mater. Sci. 25, 31733178 (1990).
29. Younis, S., Kauffmann, Y., Pokroy, B., and Zolotoyabko, E.: Atomic structure and ultrastructure of the Murex troscheli shell. J. Struct. Biol. 180, 539545 (2012).
30. Barthelat, F., Rim, J.E., and Espinosa, H.D.: A Review on the Structure and Mechanical Properties of Mollusk Shells - Perspectives on Synthetic Biomimetic Materials. In Applied Scanning Probe Methods XIII, Biomimetics and Industrial Applications, Bhushan, B. and Fuchs, H., eds. (Springer: New York, 2009); pp. 1741.
31. Kobayashi, I. and Akai, J.: Twinned aragonite crystals found in the bivalvian crossed lamellar shell structure. J. Geol. Soc. Jpn. 100, 177180 (1994).
32. Wolf, S.E., Böhm, C.F., Harris, J., Demmert, B., Jacob, D., Mondeshki, M., Ruiz-Agudo, E., and Navarro, C.R.: Nonclassical Crystallization in vivo et in vitro (I): Process-Structure-Property relationships of nanogranular biominerals. J. Struct. Biol. (2016). In review.
33. Wolf, S.E., Lieberwirth, I., Natalio, F., Bardeau, J-F., Delorme, N., Emmerling, F., Barrea, R., Kappl, M., and Marin, F.: Merging models of biomineralisation with concepts of nonclassical crystallisation: is a liquid amorphous precursor involved in the formation of the prismatic layer of the Mediterranean Fan Mussel Pinna nobilis? Faraday Discuss. 159, 433 (2012).
34. Gal, A., Kahil, K., Vidavsky, N., DeVol, R.T., Gilbert, P.U.P.A., Fratzl, P., Weiner, S., and Addadi, L.: Particle Accretion Mechanism Underlies Biological Crystal Growth from an Amorphous Precursor Phase. Adv. Funct. Mater. 24, 54205426 (2014).
35. Gal, A., Habraken, W., Gur, D., Fratzl, P., Weiner, S., and Addadi, L.: Calcite Crystal Growth by a Solid-State Transformation of Stabilized Amorphous Calcium Carbonate Nanospheres in a Hydrogel. Angew. Chem., Int. Ed. 125, 49674970 (2013).
36. Ihli, J., Wong, W.C., Noel, E.H., Kim, Y-Y., Kulak, A.N., Christenson, H.K., Duer, M.J., and Meldrum, F.C.: A critical analysis of calcium carbonate mesocrystals. Nat. Commun. 5, 3169 (2014).
37. Jacob, D.E., Wirth, R., Soldati, A., Wehrmeister, U., and Schreiber, A.: Amorphous calcium carbonate in the shells of adult Unionoida. J. Struct. Biol. 173, 241249 (2011).
38. Hovden, R., Wolf, S.E., Holtz, M.E., Marin, F., Muller, D.A., and Estroff, L.A.: Nanoscale assembly processes revealed in the nacroprismatic transition zone of Pinna nobilis mollusc shells. Nat. Commun. 6, 10097 (2015).
39. Dauphin, Y.: The nanostructural unity of Mollusc shells. Miner. Mag. 72, 243246 (2008).
40. Sethmann, I.: Observation of nano-clustered calcite growth via a transient phase mediated by organic polyanions: A close match for biomineralization. Am. Miner. 90, 12131217 (2005).
41. Sethmann, I., Hinrichs, R., Wörheide, G., and Putnis, A.: Nano-cluster composite structure of calcitic sponge spicules–a case study of basic characteristics of biominerals. J. Inorg. Biochem. 100, 8896 (2006).
42. Araujo, R., Ramos, M.A., and Bedoya, J.: Microtubules in the shell of the invasive bivalve Corbicula fluminea. J. Molluscan Stud. 60, 406413 (1994).
43. Hallett, P.D., Dexter, A.R., and Seville, J.P.K.: Identification of pre-existing cracks on soil fracture surfaces using dye. Soil Tillage Res. 33, 163184 (1995).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Böhm et al. supplementary material
Supplementary figures

 Word (242 KB)
242 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed