Skip to main content Accessibility help
×
×
Home

Structure property relationship in (TiZrNbCu)1−xNix metallic glasses

  • Emil Babić (a1), Damir Pajić (a1), Krešo Zadro (a1), Katica Biljaković (a2), Vesna Mikšić Trontl (a2), Petar Pervan (a2), Damir Starešinić (a2), Ignacio A. Figueroa (a3), Ahmed Kuršumović (a4), Štefan Michalik (a5), Andrea Lachová (a6), György Remenyi (a7) and Ramir Ristić (a8)...
Abstract

The atomic structure, electronic structure, and physical properties of (TiZrNbCu)1−xNix (x ≤ 0.5) metallic glasses (MGs) were studied in both the high-entropy (0 < x < 0.35) and the higher Ni concentration range (x ≥ 0.35). Atomic structure studies performed with X-ray diffraction and synchrotron powder diffraction provided average atomic volumes, structure factors, radial distribution functions, coordination numbers, and packing densities. Electronic structure studies performed using photoemission spectroscopy and low-temperature specific heat provided information about the electronic density of states within the valence band and at the Fermi level and also about interatomic bonding and atomic vibrations [from the Debye temperature and the boson peak (BP)]. Variations of both atomic structure and electronic structure with x showed a clear change for x ≥ 0.35, which corresponds to a valence electron number ≥7.4. All physical properties, namely, thermal stability parameters, Debye temperatures, BPs, magnetic, elastic, and electronic transport properties, change their concentration-dependence for x ≥ 0.35. The results are compared with those for binary and ternary MGs of the same elements.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: ramir.ristic@fizika.unios.hr
Footnotes
Hide All

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Footnotes
References
Hide All
1.Ma, L., Wang, L., Zhang, T., and Inoue, A.: Bulk glas formation of Ti–Zr–Hf–Cu–M (M = Fe–Co–Ni) alloys. Metall. Trans. 43, 277 (2002).
2.Cantor, B., Kim, K.B., and Warren, P.J.: Novel multicomponent amorphous alloys. Mater. Sci. Forum 386–388, 27 (2002).
3.Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).
4.Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).
5.Senkov, O.N., Miller, J.D., Miracle, D.B., and Woodward, C.: Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015).
6.Miracle, D.B.: Critical assessment 14: High entropy alloys and their development as structural materials. Mater. Sci. Technol. 31, 1142 (2015).
7.Pickering, E.J. and Jones, N.G.: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183 (2016).
8.Yeh, J.W.: Physical metallurgy of high-entropy alloys. JOM 67, 2254 (2015).
9.Tsai, M.H.: Physical properties of high entropy alloys. Entropy 15, 5338 (2013).
10.Cantor, B.: Multicomponent and high entropy alloys. Entropy 16, 4749 (2014).
11.Ye, Y.F., Wang, Q., Lu, J., Liu, C.T., and Yang, Y.: High-entropy alloy: Challenges and prospects. Mater. Today 19, 349 (2016).
12.Zhang, Y., Zuo, T.T., Tang, Z., Gao, M., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).
13.Guo, S.: Phase selection rules for cast high entropy alloys: An overview. Mater. Sci. Technol. 31, 1223 (2015).
14.Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).
15.Wang, W.H.: Phase selection in high-entropy alloys: From nonequilibrium to equilibrium. JOM 66, 1 (2014); and references therein.
16.Murty, B.S., Jeh, J.W., and Ranganathan, S.: High-entropy Alloys (Butterworth-Heinemann, London, 2014).
17.Gao, M.C., Yeh, J-W., Liaw, P.K., and Zhang, Y., eds.: High Entropy Alloys (Springer International Publishing, Cham, Switzerland, 2016).
18.Biljaković, K., Remenyi, G., Figueroa, I.A., Ristić, R., Pajić, D., Kuršumović, A., Starešinić, D., Zadro, K., and Babić, E.: Electronic structure and properties of (TiZrNbCu)1−xNix high entropy amorphous alloys. J. Alloys Compd. 695, 2661 (2017).
19.Lužnik, J., Koželj, P., Vrtnik, S., Jelen, A., Jagličić, Z., Meden, A., Feuerbacher, M., and Dolinšek, J.: Complex magnetism of Ho–Dy–Y–Gd–Tb hexagonal high-entropy alloy. Phys. Rev. B 92, 224201 (2015).
20.Vrtnik, S., Koželj, P., Meden, A., Maiti, S., Steurer, W., Feuerbacher, M., and Dolinšek, J.: Superconductivity in thermally annealed Ta–Nb–Hf–Zr–Ti high-entropy alloys. J. Alloys Compd. 695, 3530 (2017).
21.Koželj, P., Vrtnik, S., Jelen, A., Jazbec, S., Jagličić, Z., Maiti, S., Feuerbacher, M., Steurer, W., and Dolinšek, J.: Discovery of a superconducting high-entropy alloy. Phys. Rev. Lett. 113, 107001 (2014).
22.Babić, E., Biljaković, K., Figueroa, I.A., Kuršumović, A., Mikšić Trontl, V., Pajić, D., Pervan, P., Remenyi, G., Ristić, R., and Starešinić, D.: High-Entropy Alloys: New Challenge in Materials Science. Invited Talk, Solid-State Science & Research Conference, Ruđer Bošković Institute, Scires Book of Abstracts (Zagreb, Croatia, 2017); p. 25.
23.Zhang, Y., Stocks, G.M., Jin, K., Lu, C., Bei, H., Sales, B.C., Wang, L., Béland, L.K., Stoller, R.E., Samolyuk, G.D., Caro, M., Caro, A., and Weber, W.J.: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat. Commun. 6, 8736 (2015).
24.Zuo, T., Gao, M.C., Ouyang, L., Yang, X., Cheng, Y., Feng, R., Chen, S., Liaw, P.K., Hawk, J.A., and Zhang, Y.: Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater. 130, 10 (2017).
25.Wu, Z., Troparevsky, M.C., Gao, Y.F., Morris, J.R., Stocks, G.M., and Bei, H.: Phase stability, physical properties and strengthening mechanisms of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. 21, 267 (2017).
26.Huang, S., Holmström, E., Eriksson, O., and Vitos, L.: Mapping the magnetic transition temperatures for medium- and high-entropy alloys. Intermetallics 95, 80 (2018).
27.Gao, M.C., Gao, P., Hawk, J.A., Ouyang, L., Alman, D.E., and Widom, M.: Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity. J. Mater. Res. 32, 3627 (2017).
28.Ristić, R., Zadro, K., Pajić, D., Figueroa, I.A., and Babić, E.: On the origin of bulk glass forming ability in Cu–Hf, Zr alloys. EPL 114, 17006 (2016); and reference therein; E. Babić, R. Ristić, I. Figueroa, D. Pajić, Ž. Skoko, and K. Zadro: Electronic structure and glass forming ability in early and late transition metal alloys. Philos. Mag. 98, 693 (2018).
29.Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).
30.Todai, M., Nagase, T., Hori, T., Matsugaki, A., Sekita, A., and Nakano, T.: Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials. Scr. Mater. 129, 65 (2017).
31.Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., and Liaw, P.K.: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).
32.Troparevsky, M.C., Morris, J.R., Kent, P.R.C., Lupini, A.R., and Stocks, G.M.: Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 011041 (2015).
33.King, D.J.M., Middleburgh, S.C., McGregor, A.G., and Cortie, M.B.: Predicting the formation and stability of single phase high-entropy alloys. Acta Mater. 104, 172 (2016).
34.Wang, F., Inoue, A., Kong, F.L., Han, Y., Zhu, S.L., Shalaan, E., and Al-Marouki, F.: Formation, thermal stability and mechanical properties of high entropy (Fe,Co,Ni,Cr,Mo)-B amorphous alloys. J. Alloys Compd. 732, 637 (2018); and references therein.
35.Huo, J., Huo, L., Li, J., Men, H., Wang, X., Inoue, A., Chang, C., Wang, J-Q., and Li, R-W.: High-entropy bulk metallic glasses as promising magnetic refrigerants. J. Appl. Phys. 117, 073902 (2015).
36.Figueroa, I.A., Ristić, R., Kuršumović, A., Biljaković, K., Starešinić, D., Pajić, D., Remenyi, G., and Babić, E.: Properties of (TiZrNbCu)1−xNix metallic glasses. J. Alloys Compd. 745, 455 (2018).
37.Cunliffe, A., Plummer, J., Figueroa, I., and Todd, I.: Glass formation in a high entropy alloy system by design. Intermetallics 23, 204 (2012).
38.Ristić, R., Cooper, J.R., Zadro, K., Pajić, D., Ivkov, J., and Babić, E.: Ideal solution behaviour of glassy Cu–Ti, Zr, Hf alloys and properties of amorphous copper. J. Alloys Compd. 621, 136 (2015).
39.Drakopoulos, M., Connolley, T., Reinhard, C., Atwood, R., Magdysyuk, O., Vo, N., Hart, M., Connor, L., Humphreys, B., Howell, G., Davies, S., Hill, T., Wilkin, G., Pedersen, U., Foster, A., De Maio, N., Basham, M., Yuan, F., and Wanelik, K.: I12: The joint engineering, environment and processing (JEEP) beamline at diamond light source. J. Synchrotron Radiat. 22, 828 (2015).
40.Filik, J., Ashton, A.W., Chang, P.C.Y., Chater, P.A., Day, S.J., Drakopoulos, M., Gerring, M.W., Hart, M.L., Magdysyuk, O.V., Michalik, S., Smith, A., Tang, C.C., Terrill, N.J., Wharmby, M.T., and Wilhelmet, H.: Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2. J. Appl. Crystallogr. 50, 959 (2017).
41.Remenyi, G., Biljaković, K., Starešinić, D., Dominko, D., Ristić, R., Babić, E., Figueroa, I.A., and Davies, H.A.: Looking for footprint of bulk metallic glass in electronic and phonon heat capacities of Cu55Hf45−xTix alloys. Appl. Phys. Lett. 104, 171906 (2014).
42.Gao, M.C., Zhang, C., Gao, P., Zhang, F., Ouyang, L.Z., Widom, M., and Hawk, J.A.: Thermodynamics of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. 21, 238 (2017).
43.Sheikh, S., Mao, H., and Guo, S.: Predicting solid solubility in CoCrFeNiMx (M = 4d transition metal) high-entropy alloys. J. Appl. Phys. 121, 194903 (2017); and references therein.
45.Calvayrac, Y., Chevalier, J.P., Harmelin, M., and Quivy, A.: On the stability and structure of Cu–Zr based glasses. Philos. Mag. B 48, 323 (1983).
46.Ristić, R. and Babić, E.: Thermodynamic properties and atomic structure of amorphous zirconium. Mater. Sci. Eng., A 449–451, 569 (2007).
47.Ristić, R. and Babić, E.: Magnetic susceptibility and atomic structure of paramagnetic Zr–(Co, Ni, Cu) amorphous alloys. J. Non-Cryst. Solids 353, 3108 (2007).
48.Bakonyi, I., Ebert, H., and Liechenstein, A.I.: Electronic structure and magnetic susceptibility of the different structural modifications of Ti, Zr, and Hf metals. Phys. Rev. B 48, 7841 (1993).
49.Bakonyi, I.: Atomic volumes and local structure of metallic glasses. Acta Mater. 53, 2509 (2005).
50.Ma, D., Stoica, A.D., and Wang, X-L.: Volume conservation in bulk metallic glasses. Appl. Phys. Lett. 91, 021905 (2007).
51.Hufnagel, T.C., Ott, R.T., and Almer, J.: Structural aspects of elastic deformation of a metallic glass. Phys. Rev. B 73, 064204 (2006).
52.Egami, T. and Billinge, S.: Underneath the Bragg Peaks: Structural Analysis of Complex Materials (Pergamon Press, Elsevier, Oxford, England, 2003).
53.Bednarcik, J., Michalik, S., Kolesar, V., Rutt, U., and Franz, H.: In situ XRD studies of nanocrystallization of Fe-based metallic glass: A comparative study by reciprocal and direct space methods. Phys. Chem. Chem. Phys. 15, 8470 (2013).
54.Waseda, Y.: The Structure of Non-crystalline Materials (McGraw-Hill Inc., 1980).
55.Faber, T.E. and Ziman, J.M.: A theory of the electrical properties of liquid metals. Philos. Mag. 11, 153 (1965).
56.Qiu, X., Thompson, J.W., and Billinge, S.J.L.: PDFgetX2: A GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data. J. Appl. Cryst. 37, 678 (2004).
57.Scudino, S., Stoica, M., Kaban, I., Prashanth, K.G., Vaughan, G.B.M., and Eckert, J.: Length scale-dependent structural relaxation in Zr57.5Ti7.5Nb5Cu12.5Ni10Al7.5 metallic glass. J. Alloys Compd. 639, 465 (2015); N. Mattern, U. Kuhn, H. Hermann, H. Ehrenberg, J. Neufeind, and J. Eckert: Short-range order of Zr62−xTixAl10Cu20Ni10 bulk metallic glasses. Acta. Mater. 50, 305 (2002).
58.Tian, F., Varga, L.K., Chen, N., Shen, J., and Vitos, L.: Ab initio design of elastically isotropic TiZrNbMoVx high-entropy alloys. J. Alloys Compd. 599, 19 (2014).
59.Oelhafen, P., Hauser, E., and Güntherodt, H-J.: Varying d-band splliting in glassy transition metal alloys. Solid State Commun. 35, 1017 (1980).
60.Ristić, R., Babić, E., Šaub, K., and Miljak, M.: Electrical and magnetic properties of amorphous Zr100−xCux alloys. Fizika 15, 363 (1983); E. Babić, R. Ristić, M. Miljak, M.G. Scott, and G. Gregan: Superconductivity in zirconium-nickel glasses. Solid State Commun. 39, 139 (1981).
61.Bakonyi, I.: Electronic structure and atomic structure of (Ti,Zr,Hf)–(Ni,Cu) metallic glasses. J. Non-Cryst. Solids 180, 131 (1995).
62.Ristić, R., Stubičar, M., and Babić, E.: Correlation between mechanical, thermal and electronic properties in Zr–Ni, Cu amorphous alloys. Philos. Mag. 87, 5629 (2007); R. Ristić, E. Babić, M. Stubičar, and A. Kuršumović: Correlation between electronic structure, mechanical properties and stability of TE-TL metallic glasses. Croat. Chem. Acta 83, 33 (2010).
63.Hasegawa, M., Sato, H., Takeuchi, T., Soda, K., and Mizutani, U.: Electronic structure of Zr-based metallic glasses. J. Alloys Compd. 483, 638 (2009); C. Hausleitner and J. Hafner: Hybridized nearly free electron tight binding approach to interatomic forces in disordered transition-metal alloys. II. Modeling of metallic glasses. Phys. Rev. B 45, 128 (1992).
64.Mikšić Trontl, V. et al.: in preparation, 2018.
65.Zehringer, R., Oelhafen, P., Güntherodt, H-J., Yamada, Y., and Mizutani, U.: Electronic structure of (Ni33Zr67)85X15 (X = Ti, V, Cr, Mn, Fe, Co and Cu metallic glasses studied by photoelectron spectroscopy. Mater. Sci. Eng. 99, 317320 (1988).
66.Mikšić Trontl, V., Pervan, P., and Milun, M.: Growth and electronic properties of ultra-thin Ag films on Ni(111). Surf. Sci. 603, 125130 (2009).
67.Calloni, A., Bussetti, G., Berti, G., Yivlialin, R., Camera, A., Finazzi, M., Duò, L., and Ciccacci, F.: Electronic and magnetic structure of ultra-thin Ni films grown on W(110). J. Magn. Magn. Mater. 420, 356362 (2016).
68.Greig, D., Gallagher, B.L., Howson, M.A., Law, D.S-L., Norman, D., and Quinn, F.M.: Photoemission studies on metallic glasses using synchrotron radiation. Mater. Sci. Eng. 99, 265 (1988).
69.Takahara, Y. and Narita, N.: Local electronic structures and chemical bonds in Zr-based metallic glasses. Mater. Trans. 45, 1172 (2004).
70.Höchst, H., Steiner, P., Reiter, G., and Hiifner, S.: XPS Valence Bands of Ti, Zr, Nb, Mo and Hf. Z. phys. B: Condens. Matter 42, 199 (1981).
71.Xiang, P., Liu, J.S., Li, M.Y., Yang, H.F., Liu, Z.T., Fan, C.C., Shen, D.W., Wang, Z., and Liu, Z.: In situ electronic structure study of epitaxial niobium thin films by angle-resolved photoemission spectroscopy. Chin. Phys. Lett. 34, 077402 (2017).
72.Kübler, J., Bennemann, K.H., Lapka, R., Rösel, F., Oelhafen, P., and Güntherodt, H-J.: Electronic structure of amorphous transition-metal alloys. Phys. Rev. B 23, 5176 (1981).
73.Moody, D.E. and Ng, T.K.: Low temperature specific heats of amorphous Cu–Ti alloys. In LT17 Proceedings, Eckern, U., Schmid, A., Weber, W., and Wühl, H., eds. (Elsevier Science Publishers B.V, 1984); p. B06.
74.Kanemaki, S., Suzuki, M., Yamada, Y., and Mizutani, U.: Low temperature specific heat, magnetic susceptibility and electrical resistivity measurements in Ni–Ti metallic glasses. J. Phys. F: Met. Phys. 18, 105 (1988).
75.Garoche, P. and Bigot, J.: Comparison between amorphous and crystalline phases of copper–zirconium alloys by specific-heat measurements. Phys. Rev. B 28, 6886 (1983).
76.Matsuura, M. and Mizutani, U.: Low-temperature specific heat study of Ni100−xZrx (x = 30–80) metallic glasses. J. Phys. F: Met. Phys. 16, L183 (1986).
77.Karkut, M.G. and Hake, R.R.: Upper critical fields and superconducting transition temperatures of some zirconium-base amorphous transition-metals alloys. Phys. Rev. B 28, 1396 (1983).
78.Ivkov, J., Babić, E., and Jacobs, R.L.: Hall effect and electronic structure of glassy Zr-3d alloys. J. Phys. F: Met. Phys. 14, L53 (1984).
79.Kuveždić, M., Tafra, E., Basletić, M., Ristić, R., Trontl, V. Mikšić, Pervan, P., Figueroa, I.A., and Babić, E.: Electronic structure and transport properties of (TiZrNbCu)1−xNix metallic glasses. in preparation, 2018.
80.McMillan, W.L.: Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331 (1968).
81.Banhart, J., Ebert, H., and Voitlander, J.: Diamagnetic susceptibility of pure metals and binary alloys. J. Magn. Magn, Mater. 61, 221 (1986).
82.Place, C.M. and Rhodes, P.: Paramagnetic orbital susceptibility of transition metals. Phys. Status Solidi B 47, 475 (1971).
83.Cheng, Y.Q. and Ma, E.: Atomic-level structure and structure–property relationship in metallic glasses. Prog. Mater.Sci. 56, 379 (2011).
84.Salčinović Fetić, A., Remenyi, G., Starešinić, D., Kuršumović, A., Babić, E., Sulejmanović, S., and Biljaković, K.: Analysis of the fragility of the Zr77Ni23 metallic glass based on low-temperature heat capacity measurements. Phys. Rev. B 96, 064201 (2017).
85.Ristić, R., Babić, E., Stubičar, M., Kuršumović, A., Cooper, J.R., Figueroa, I.A., Davies, H.A., Todd, I., Varga, L.K., and Bakonyi, I.: Simple correlation between mechanical and thermal properties in TE–TL (TE = Ti, Zr, Hf; TL = Ni, Cu) amorphous alloys. J. Non-Cryst. Solids 357, 2949 (2011).
86.Marohnić, Ž., Guberović, M., Babić, E., and Morgan, G.J.: Induced conductivity anisotropy in glassy Zr1−xMx alloys. J. Phys. F: Met. Phys. 17, 1123 (1987).
87.Whang, S.H., Polk, D.E., and Giessen, B.C.: Hardness versus Young's modulus of metallic glasses. In Proceedings of the Fourth International Conference on Rapidly Quenched Metals, Masumoto, T. and Suzuku, K., eds. (Japan Institute of Metals, Sendai, 1982); p. 1365.
88.Cohrane, R.W., Destry, J., El Amrani, M., Altounian, Z., and Strom-Olsen, J.O.: Pressure dependence of the resistivity of amorphous NiZr alloys. In Proceedings of the Fourth International Conference on Rapidly Quenched Metals, Steeb, S. and Warlimont, H., eds. (Elsevier, 1985); p. 1083.
89.Davis, L.A., Chou, C-P., Tanner, L.E., and Ray, R.: Strength and stiffnesses of metallic glasses. Scr. Mater. 10, 937 (1976).
90.Ristić, R., Babić, E., Pajić, D., Zadro, K., Kuršumović, A., Figueroa, I.A., Davies, H.A., Todd, I., Varga, L.K., and Bakonyi, I.: Properties and atomic structure of amorphous early transition metals. J. Alloys Compd. 504S, S194 (2010).
91.Maiti, S. and Steurer, W.: Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Mater. 106, 87 (2016).
92.Fukuyama, H. and Hoshino, K.: Effect of spin-orbit interaction on magnetoresistance in the weakly localized region of three-dimensional disordered systems. J. Phys. Soc. Jpn. 50, 2131 (1981).
93.Šaub, K., Babić, E., and Ristić, R.: Quantum corrections to conductivity of glassy Zr100−xCux alloys. Solid State Commun. 53, 269 (1985).
94.Babić, E. and Šaub, K.: Universal conductivity variation in glassy Zr–M alloys. Solid State Commun. 56, 111 (1985).
95.Ristić, R., Babić, E., and Šaub, K.: Temperature and concentration dependence of the electrical resistivity of Zr–Cu and Zr–Ni glassy alloys. Fizika 21(Suppl. 1) 216 (1989).
96.Tafra, E., Basletić, M., Ristić, R., Babić, E., and Hamzić, A.: Enhanced superconductivity in Hf-base metallic glasses. J. Phys.: Condens. Matter 20, 425215 (2008).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed