Skip to main content Accessibility help

Structure–property relationships for 3D-printed PEEK intervertebral lumbar cages produced using fused filament fabrication

  • Cemile Basgul (a1), Tony Yu (a2), Daniel W. MacDonald (a1), Ryan Siskey (a3), Michele Marcolongo (a2) and Steven M. Kurtz (a3)...


Recent advances in the additive manufacturing technology now enable fused filament fabrication of polyetheretherketone (PEEK). A standardized lumbar fusion cage design was 3D printed with different speeds of the printhead nozzle to investigate whether 3D-printed PEEK cages exhibit sufficient material properties for lumbar fusion applications. It was observed that the compressive and shear strength of the 3D-printed cages were 63–71% of the machined cages, whereas the torsion strength was 92%. The printing speed is an important printing parameter for 3D-printed PEEK, which resulted in up to 20% porosity at the highest speed of 3000 mm/min, leading to reduced cage strength. Printing speeds below 1500 mm/min can be chosen as the optimal printing speed for this printer to reduce the printing time while maintaining strength. The crystallinity of printed PEEK did not differ significantly from the as-machined PEEK cages from extruded rods, indicating that the processing provides similar microstructure.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Tack, P., Victor, J., Gemmel, P., and Annemans, L.: 3D-printing techniques in a medical setting: A systematic literature review. Biomed. Eng. Online 15, 115 (2016).
2.Eltorai, A.E., Nguyen, E., and Daniels, A.H.: Three-dimensional printing in orthopedic surgery. Orthopedics 38, 684 (2015).
3.Gibbs, D.M., Vaezi, M., Yang, S., and Oreffo, R.O.: Hope versus hype: What can additive manufacturing realistically offer trauma and orthopedic surgery? Regener. Med. 9, 535 (2014).
4.Martelli, N., Serrano, C., van den Brink, H., Pineau, J., Prognon, P., Borget, I., and El Batti, S.: Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review. Surgery 159, 1485 (2016).
5.Provaggi, E., Leong, J.J.H., and Kalaskar, D.M.: Applications of 3D printing in the management of severe spinal conditions. Proc. Inst. Mech. Eng., Part H 231, 471 (2017).
6.Ventola, C.L.: Medical applications for 3D printing: Current and projected uses. P&T 39, 704 (2014).
7.Janusz, D., Konstanty, S., Roman, G., and Adrian, M.: Rapid prototyping in the intervertebral implant design process. Rapid Prototyp. J. 21, 735 (2015). Beer, N. and van der Merwe, A.: Patient-specific intervertebral disc implants using rapid manufacturing technology. Rapid Prototyp. J. 19, 126 (2013).
9.Figueroa-Cavazos, J.O., Flores-Villalba, E., Diaz-Elizondo, J.A., Martinez-Romero, O., Rodriguez, C.A., and Siller, H.R.: Design concepts of polycarbonate-based intervertebral lumbar cages: Finite element analysis and compression testing. Appl. Bionics Biomechanics 2016, 7149182 (2016).
10.Serra, T., Capelli, C., Toumpaniari, R., Orriss, I.R., Leong, J.J., Dalgarno, K., and Kalaskar, D.M.: Design and fabrication of 3D-printed anatomically shaped lumbar cage for intervertebral disc (IVD) degeneration treatment. Biofabrication 8, 035001 (2016).
11.Figueroa, O., Rodríguez, C.A., Siller, H.R., Martinez-Romero, O., Flores-Villalba, E., Díaz-Elizondo, J., and Ramírez, R.: Lumbar cage design concepts based on additive manufacturing. In High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping, Silva Bártolo, P.H.A., de Lemos, A.C.S., and Pereira, A.M.H., eds. (CRC Press, New York, USA, 2013); ch. 102.
12.McGilvray, K.C., Waldorff, E.I., Easley, J., Seim, H.B., Zhang, N., Linovitz, R.J., Ryaby, J.T., and Puttlitz, C.M.: Evaluation of a polyetheretherketone (PEEK) titanium composite interbody spacer in an ovine lumbar interbody fusion model: Biomechanical, microcomputed tomographic, and histologic analyses. Spine J. 17, 19071916 (2017).
13.Asil, K. and Yaldiz, C.: Retrospective comparison of radiological and clinical outcomes of PLIF and TLIF techniques in patients who underwent lumbar spinal posterior stabilization. Medicine 95, (2016).
14.Bartolo, P.J.d.S., Lemos, A.C.S.d., Pereira, A.M.H., Mateus, A.J.D.S., Ramos, C., Santos, C.D., Oliveira, D., Pinto, E., Craveiro, F., Bartolo, H.M.C.d.R.T.G., Almeida, H.d.A., Sousa, I., Matias, J.M., Durao, L., Gaspar, M., Alves, N.M.F., Carreira, P., Ferreira, T., and Marques, T.: High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping: Proceedings of the 6th International Conference on Advanced Research in Leiria, Portugal, 1–5 October, 2013 (CRC Press, Inc., Leira, Portugal, 2013).
15.Vadapalli, S., Sairyo, K., Goel, V.K., Robon, M., Biyani, A., Khandha, A., and Ebraheim, N.A.: Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion—A finite element study. Spine 31, E992 (2006).
16.Duncan, J.W. and Bailey, R.A.: An analysis of fusion cage migration in unilateral and bilateral fixation with transforaminal lumbar interbody fusion. Eur. Spine J. 22, 439 (2013).
17.Schmidt, M., Pohle, D., and Rechtenwald, T.: Selective laser sintering of PEEK. CIRP Ann. 56, 205 (2007).
18.Berretta, S., Evans, K.E., and Ghita, O.: Processability of PEEK, a new polymer for high temperature laser sintering (HT-LS). Eur. Polym. J. 68(Suppl. C), 243 (2015).
19.Wu, W.Z., Geng, P., Zhao, J., Zhang, Y., Rosen, D.W., and Zhang, H.B.: Manufacture and thermal deformation analysis of semicrystalline polymer polyether ether ketone by 3D printing. Mater. Res. Innovations 18(Suppl. 5), S5 (2014).
20.Vaezi, M. and Yang, S.: Extrusion-based additive manufacturing of PEEK for biomedical applications. Virtual Phys. Prototyp. 10, 123 (2015).
21.Rahman, K.M., Letcher, T., and Reese, R.: Mechanical properties of additively manufactured PEEK components using fused filament fabrication. In ASME 2015 International Mechanical Engineering Congress and Exposition Volume 2A: Advanced Manufacturing (Houston, Texas, 2015); p. 57359.
22.Cicala, G., Latteri, A., Del Curto, B., Lo Russo, A., Recca, G., and Fare, S.: Engineering thermoplastics for additive manufacturing: A critical perspective with experimental evidence to support functional applications. J. Appl. Biomater. Funct. Mater. 15, (2017). doi: 10.5301/jabfm.5000343.
23.Kurtz, S.M., ed.: Chapter 2-synthesis and processing of PEEK for surgical implants. In PEEK Biomaterials Handbook (William Andrew Publishing, Oxford, U.K., 2012); p. 9.
24.Green, S.M. and Schlegel, J.: A Polyaryletherketone Biomaterial for Use in Medical Implant Applications (Rapra Technology Limited, Shawbury, Brussels, U.K., 2001); pp. 17.
25.Research Report: Interlaboratory Study to Establish Precision Statements for ASTM F2077 (ASTM International, West Conshohocken, Pennsylvania, 2014); pp. F04F1014.
26.ASTM F2077-17: Test Methods for Intervertebral Body Fusion Devices (ASTM International, West Conshohocken, Pennsylvania, 2017).
27.ISO/IEC 17025:2005: General Requirements for the Competence of Testing and Calibration Laboratories International Organization for Standardization (International Organization for Standardization, Geneva, Switzerland, 2017).
28.Hildebrand, T. and Rüegsegger, P.: A new method for the model-independent assessment of thickness in three-dimensional images. J. Microsc. 185, 67 (1997).
29.ASTM F2778-09(2015): Standard Test Method for Measurement of Percent Crystallinity of Polyetheretherketone (PEEK) Polymers by Means of Specular Reflectance Fourier Transform Infrared Spectroscopy (R-FTIR) (ASTM International, West Conshohocken, Pennsylvania, 2015). Available at:
30.Victrex: victrex_tds_450g, Lancashire, U.K., 2018.
31.White, A.A. and Panjabi, M.M.: Clinical Biomechanics of the Spine (Lippincott, Philadelphia, Pennsylvania, 1978).
32.Keaveny, T.M. and Buckley, J.M.: Chapter 4-biomechanics of vertebral bone. In Spine Technology Handbook, Kurtz, S.M. and Edidin, A.A., eds. (Academic Press, Burlington, Massachusetts, 2006); p. 63.
33.Wilke, H.J., Neef, P., Caimi, M., Hoogland, T., and Claes, L.E.: New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 24, 755 (1999).
34.Melkerson, M., Kirkpatrick, J., and Griffith, S.: Spinal Implants: Are we Evaluating them Appropriately? (ASTM International, West Conshohocken, Pennsylvania, 2003).
35.Chen, R.K., Lo, T.T., Chen, L., and Shih, A.J.: Nano-CT characterization of structural voids and air bubbles in fused deposition modeling for additive manufacturing. In ASME 2015 International Manufacturing Science and Engineering Conference Volume 1: Processing (Charlotte, North Carolina, 2015).
36.Rybachuk, M., Alice Mauger, C., Fiedler, T., and Öchsner, A.: Anisotropic mechanical properties of fused deposition modeled parts fabricated by using acrylonitrile butadiene styrene polymer. J. Polym. Eng., 37, 699 (2017).
37.Sung-Hoon, A., Michael, M., Dan, O., Shad, R., and Paul, K.W.: Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. J. 8, 248 (2002).
38.Sobieraj, M.C. and Rimnac, C.M.: Chapter 5-fracture, fatigue, and notch behavior of PEEK. In PEEK Biomaterials Handbook, Kurtz, S.M., ed. (William Andrew Publishing, Oxford, U.K., 2012); p. 61.
39.Jaekel, D., Medel, F.J., and Kurtz, S.M.: Validation of crystallinity measurements of medical grade PEEK using specular reflectance FTIR-microscopy. In Annual Technical Conference—ANTEC, Conference Proceedings, Vol. 5, 2019; pp. 25112516.
40.Jaekel, D.J., MacDonald, D.W., and Kurtz, S.M.: Characterization of PEEK biomaterials using the small punch test. J. Mech. Behav. Biomed. Mater. 4, 1275 (2011).


Type Description Title
Supplementary materials

Basgul et al. supplementary material
Basgul et al. supplementary material 1

 Unknown (88 KB)
88 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed