Skip to main content Accessibility help

Studies on thermoplastic 3D printing of steel–zirconia composites

  • Uwe Scheithauer (a1), Anne Bergner (a1), Eric Schwarzer (a1), Hans-Jürgen Richter (a1) and Tassilo Moritz (a1)...


Additive manufacturing (AM) opens new possibilities for functionalization and miniaturization of components in many application fields. Different technologies are known to produce single- or multimaterial components from polymer ceramic or metal. Our new approach – thermoplastic 3D printing – makes it possible to produce metal–ceramic composites. High-filled metal and ceramic suspensions based on thermoplastic binder systems were used as they solidify by cooling. Hence, the portfolio of applicable materials is not limited. Paraffin-based thermoplastic feedstocks with stainless steel powder (17-4PH) and zirconia powder (TZ-3Y-E) were developed with an adapted powder content of 47 vol% steel and 45 vol% zirconia. As compared to other AM technologies, the suspensions were only applied at particular points and areas and not on the whole layer. The printed samples were conventionally debinded and sintered. FESEM studies of the cross-section of the sintered samples showed a homogenous, dense microstructure and a very good connection between the different materials and layers.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. ASTM-Standard F2792-12a: Standard Terminology for Additive Manufacturing Technologies, March 1, 2012, ASTM International Distributed under ASTM license by Beuth publisher.
2. Chartier, T. and Badev, A.: Rapid prototyping of ceramics. In Handbook of Advanced Ceramics, Somiya, S. ed.; Elsevier, Oxford, UK, 2013; pp. 489524.
3. Pham-Gia, K., Rossner, W., Wessler, B., Schäfer, M., and Schwarz, M.: Rapid prototyping of high-density alumina ceramics using stereolithography. cfi/Ber. DKG 83, 3640 (2006).
4. Chartier, T., Duterte, C., Delhote, N., Baillargeat, D., Verdeyme, S., Delage, C., and Chaput, C.J.: Fabrication of millimeter wave components via ceramic stereo- and microstereolithography processes. J. Am. Ceram. Soc. 91, 24692474 (2008).
5. Griffith, M.L. and Halloran, J.W.: Freeform fabrication of ceramics via stereolithography. J. Am. Ceram. Soc. 79, 26012608 (1996).
6. Licciulli, A., Esposito Corcione, C., Greco, A., Amicarelli, V., and Maffezzoli, A.: Laser stereolithography of ZrO2 toughened Al2O3 . J. Eur. Ceram. Soc. 25, 15811589 (2005).
7. de Hazan, Y., Thanert, M., Trunec, M., and Misak, J.: Robotic deposition of 3d nanocomposite and ceramic fiber architectures via UV curable colloidal inks. J. Eur. Ceram. Soc. 32, 11871198 (2012).
8. Felzmann, R., Gruber, S., Mitteramskogler, G., Tesavibul, P., Boccaccini, A.R., Liska, R., and Stampfl, J.: Lithography-based additive manufacturing of cellular ceramic structures. Adv. Eng. Mater. 14, 10521058 (2012).
9. Lenk, R., Nagy, A., Richter, H-J., and Techel, A.: Material development for laser sintering of silicon carbide. cfi/Ber. DKG 83, 4143 (2006).
10. Regenfuss, P., Ebert, R., and Exner, H.: Laser micro sintering - A versatile instrument for the generation of microparts. Laser Tech. J. 4, 2631 (2007).
11. Hagedorn, Y-C., Wilkes, J., Meiners, W., Wissenbach, K., and Poprawe, R.: Net shaped high performance oxide ceramic parts by selective laser melting. Phys. Procedia 5, 587594 (2010).
12. Wu, Y., Du, J., Choy, K-L., and Hench, L.L.: Laser densification of alumina powder beds generated using aerosol spray deposition. J. Eur. Ceram. Soc. 27, 47274735 (2007).
13. Goodridge, R.D., Lorrison, J.C., Dalgarno, K.W., and Wood, D.J.: Comparison of direct and indirect selective laser sintering of porous apatite mullite glass ceramics. Glass Technol. 45, 9496 (2004).
14. Gbureck, U., Hoelzel, T., Biermann, I., Barralet, J., and Grover, L.M.: Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping. J. Mater. Sci.: Mater. Med. 19, 15591563 (2008).
15. Seitz, H., Rieder, W., Irsen, S., Leukers, B., and Tille, C.: Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J. Biomed. Mater. Res., Part B 74B, 782788 (2005).
16. Yoon, J.Y.S., Deyhle, H., Gbureck, U., Vorndran, E., Beckmann, F., and Muller, B.: Three-dimensional morphology and mechanics of bone scaffolds fabricated by rapid prototyping. Int. J. Mater. Res. 103, 200206 (2012).
17. Khalyfa, A., Meyer, W., Schnabelrauch, M., Vogt, S., and Richter, H-J.: Manufacturing of biocompatible ceramic bone substitutes by 3D-printing. cfi/Ber. DKG 83, 2326 (2006).
18. Deisinger, U., Irlinger, F., Pelzer, R., and Ziegler, G.: D-printing of HA-scaffolds for the application as bone substitute material. cfi/Ber. DKG 83, 7578 (2006).
19. Dombrowski, F., Caso, P.W.G., Laschke, M.W., Klein, M., Guenster, J., and Berger, G.: 3-D printed bioactive bone replacement scaffolds of alkaline substituted ortho-phosphates containing meta- and di-phosphates. Key Eng. Mater. 529530, 138142 (2013).
20. Zocca, A., Gomes, C.M., Bernardo, E., Muller, R., Gunster, J., and Colombo, P.: LAS glass–ceramic scaffolds by three-dimensional printing. J. Eur. Ceram. Soc. 33, 15251533 (2013).
21. Melcher, R., Travitzky, N., Zollfrank, C., and Greil, P.: 3D printing of Al2O3/Cu-O interpenetrating phase composite. J. Mater. Sci. 46, 12031210 (2011).
22. Polsakiewicz, D. and Kollenberg, W.: Highly loaded alumina inks for use in a piezoelectric print head. Mater. Sci. Eng. Technol. 42, 812819 (2011).
23. Günster, J., Engler, S., and Heinrich, J.G.: Forming of complex-shaped ceramic products via layer-wise slurry deposition (LSD). Bull. Eur. Ceram. Soc. 1, 2528 (2003).
24. Cappi, B., Oezkol, E., Ebert, J., and Telle, R.: Direct inkjet printing of Si3N4: Characterization of ink, green bodies, and microstructure. J. Eur. Ceram. Soc. 28, 26252628 (2008).
25. Ebert, J., Özkol, E., Zeichner, A., Uibel, K., Weiss, Ö., Koops, U., Telle, R., and Fischer, H.: Direct inkjet printing of dental prostheses made of zirconia. J. Dent. Res. 88, 673676 (2009).
26. Allahverdi, M., Danforth, S.C., Jafari, M., and Safari, A.: Processing of advanced electroceramic components by fused deposition technique. J. Eur. Ceram. Soc. 21, 14851490 (2001).
27. Bose, S., Darsell, J., Hosick, H., Yang, L., Sarkar, D.K., and Bandyopadhyay, A.: Processing and characterization of porous alumina scaffolds. J. Mater. Sci.: Mater. Med. 13, 2328 (2002).
28. Schlordt, T., Schwanke, S., Keppner, F., Fey, T., Travitzky, N., and Greil, P.: Robocasting of alumina hollow filament lattice structures. J. Eur. Ceram. Soc. 33, 32433248 (2013).
29. Stuecker, J.N., Cesarano, J. III, and Hirschfeld, D.A.: Control of the viscous behavior of highly concentrated mullite suspensions for robocasting. J. Mater. Process. Technol. 142, 318325 (2003).
30. Cai, K., Roman-Manso, B., Smay, J.E., Zhou, J., Osendi, M.I., Belmonte, M., and Miranzo, P.: Geometrically complex silicon carbide structures fabricated by robocasting. J. Am. Ceram. Soc. 95, 26602666 (2012).
31. Polsakiewicz, D. and Kollenberg, W.: Process and materials development for functionalized printing in three dimensions (FP-3D). refractories WORLDFORUM 4, 18 (2012).
32. Cetinel, F.A., Bauer, W., Mueller, M., Knitter, R., and Hausselt, J.: Influence of dispersant, storage time and temperature on the rheological properties of zirconia-paraffin feedstocks for LPIM. J. Eur. Ceram. Soc. 30, 13911400 (2010).
33. Gorjan, L., Dakskobler, A., and Kosmac, T.: Strength evolution of injection-molded ceramic parts during wick-debinding. J. Am. Ceram. Soc. 95, 188193 (2012).
34. Yeo, J., Jung, Y., and Choi, S.: Zirconia-stainless steel functionally graded material by tape casting. J. Eur. Ceram. Soc. 18, 12811285 (1998).
35. Dourandish, M., Simchi, A., Shabestary, E.T., and Hartwig, T.: Pressureless sintering of 3Y-TZP/stainless-steel composite layers. J. Am. Ceram. Soc. 91, 34933503 (2008).
36. Dourandish, M. and Simchi, M.A.: Study the sintering behavior of nanocrystalline 3Y-TZP/430L stainless-steel composite layers for co-powder injection molding. J. Mater. Sci. 44, 12641274 (2009).
37. Bargel, H-J. and Schulze, G.: In Material Science (original title: Werkstoffkunde), 9th ed. (Springer, Berlin, Heidelberg 2005), pp. 232334.
38. Bergner, A., Moritz, T., and Michaelis, A.: Steel-ceramic laminates made by tape casting – Processing and interfaces. J. Am. Ceram. Soc. (2014, accepted).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed