Skip to main content
×
Home

Study on microstructural evolution and constitutive modeling for hot deformation behavior of a low-carbon RAFM steel

  • Jianguo Chen (a1), Yongchang Liu (a1), Chenxi Liu (a1), Xiaosheng Zhou (a1) and Huijun Li (a1)...
Abstract
Abstract

The constitutive equation was established based on the consideration of strain compensation to describe the hot deformation behavior of low carbon reduced activation ferritic/martensitic (RAFM) steels at the temperatures of 850–1050 °C and the strain rates of 0.01–10 s−1. The result indicates that the flow stress is increased with the increase of strain rate but decreased with increase of deformation temperature. During the hot deformation process, the increase of temperature is beneficial to attain the complete dynamic recrystallization (DRX). However, excessively high temperature leads to grow up of dynamic recrystallized grain. Higher strain rate leads to finer recrystallized grains. The material constants (α, n, A) and deformation activation energy (Q) are calculated by the regression analysis. The increase of strain caused the decrease of Q, indicating the DRX occurred more easily. In addition, the developed constitutive equation could accurately predict the hot deformation behavior of the low carbon RAFM steel.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: cxliutju@163.com
Footnotes
Hide All

Contributing Editor: Jürgen Eckert

Footnotes
References
Hide All
1. Knaster J., Moeslang A., and Muroga T.: Materials research for fusion. Nat. Phys. 12, 426434 (2016).
2. Zinkle S.J., Moeslang A., Muroga T., and Tanigawa H.: Multimodal options for materials research to advance the basis for fusion energy in the ITER era. Nucl. Fusion 53, 113 (2013).
3. Ehrlich K., Cierjacks W., Kelzenberg S., and Moeslang A.: The development of structural materials for reduced long-term activation. In 17th International Symposium on Effects of Radiation on Materials, Vol. 1270, Gelles D., Nanstad R. and Kumar A., eds. (ASTM STP, West Conshocken, 1996); pp. 11091122.
4. Gilbert M.R. and Forrest R.A.: Comprehensive handbook of activation data calculated using EASY-2003. Fusion Eng. Des. 81, 15111516 (2006).
5. Ehrlich K.: Materials research towards a fusion reactor. Fusion Eng. Des. 56, 7182 (2001).
6. Klueh R.L., Alexander D.J., and Rieth M.: The effect of tantalum on the mechanical properties of a 9Cr–2W–0.25V–0.07Ta–0.1C steel. J. Nucl. Mater. 273, 146154 (1999).
7. Huang Q., Baluc N., Dai Y., Jitsukawa S., Kimura A., Konys J., Kurtz R.J., Lindau R., Muroga T., Odette G.R., Raj B., Stoller R.E., Tan L., Tanigawa H., Tavassoli A-A.F., Yamamoto T., Wan F., and Wu Y.: Recent progress of R&D activities on reduced activation ferritic/martensitic steels. J. Nucl. Mater. 442, S2S8 (2013).
8. Taneike M., Sawada K., and Abe F.: Effect carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment. Metall. Mater. Trans. A 35, 12551262 (2004).
9. Taneike M., Abe F., and Sawada K.: Creep-strengthening of steel at high temperature using nano-sized carbonitrides dispersions. Nature 424, 294296 (2003).
10. Taylor A.S. and Hodgson P.D.: Dynamic behaviour of 304 stainless steel during high Z deformation. Mater. Sci. Eng., A 528, 33103320 (2011).
11. Akbari Z., Mirzadeh H., and Cabrera J.M.: A simple constitutive model for predicting flow stress of medium carbon microalloyed steel during hot deformation. Mater. Des. 77, 126131 (2015).
12. Badjena S.K.: Dynamic recrystallization behavior of vanadium micro-alloyed forging medium carbon steel. ISIJ Int. 54, 650656 (2014).
13. Zhang C., Zhang L., Shen W., Liu C., Xia Y., and Li R.: Study on constitutive modeling and processing maps for hot deformation of medium carbon Cr–Ni–Mo alloyed steel. Mater. Des. 90, 804814 (2016).
14. Zhou Y., Liu Y., Zhou X., Liu C., Yu L., and Li C.: Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stainless steel. J. Mater. Res. 30, 20902100 (2015).
15. Wang W.T., Guo X.Z., Huang B., Tao J., Li H.G., and Pei W.J.: The flow behaviors of CLAM steel at high temperature. Mater. Sci. Eng., A 599, 134140 (2014).
16. Zhang Z.B., Mishin O.V., Tao N.R., and Pantleon W.: Microstructure and annealing behavior of a modified 9Cr–1Mo steel after dynamic plastic deformation to different strains. J. Nucl. Mater. 458, 6469 (2015).
17. Zhang Z., Zhang Y., Mishin O.V., Tao N., Pantleon W., and Jensen D.J.: Microstructural analysis of orientation-dependent recovery and recrystallization in a modified 9Cr–1Mo steel deformed by compression at high strain rate. Metall. Mater. Trans. A 47, 46824693 (2016).
18. de Carlan Y., Alamo A., Mathon M.H., Geoffroy G., and Castaing A.: Effect of thermal aging on the microstructure and mechanical properties of 7-11CrW steels. J. Nucl. Mater. 283, 672676 (2000).
19. Xia Z.X., Zhang C., Fan N.Q., Zhao Y.F., Xue F., and Liu S.J.: Improve creep properties of reduced activation steels by controlling precipitation behaviors. Mater. Sci. Eng., A 545, 9196 (2012).
20. Liu W.B., Zhang C., Xia Z.X., and Yang Z.G.: Improving high temperature creep resistance of reduced activation steels by addition of nitrogen and intermediate heat treatment. J. Nucl. Mater. 455, 402406 (2014).
21. Banerjee S., Robi P.S., Srinivasan A., and Kumar L.P.: High temperature deformation behavior of Al–Cu–Mg alloys micro-alloyed with Sn. Mater. Sci. Eng., A 527, 24982503 (2010).
22. Rokni M.R., Zarie-Hanzaki A., Roostaei A.A., and Abolhasani A.: Constitutive base analysis of a 7075 aluminum alloy during hot compression testing. Mater. Des. 32, 49554960 (2011).
23. Mirzadeh H., Cabrera J.M., Prado J.M., and Najafizadeh A.: Hot deformation behavior of a medium carbon microalloyed steel. Mater. Sci. Eng., A 528, 38763882 (2011).
24. Lin Y.C., Xia Y.C., Chen X.M., and Chen M.S.: Constitutive descriptions for hot compressed 2124-T851 aluminum alloy over a wide range of temperature and strain rate. Comput. Mater. Sci. 50, 227233 (2010).
25. Li H.Y., Wei D.D., Hu J.D., Li Y.H., and Chen S.L.: Constitutive modeling for hot deformation behavior of T24 ferritic steel. Comput. Mater. Sci. 53, 425430 (2012).
26. Lin Y.C., Chen M.S., and Zhong J.: Prediction of 42CrMo steel flow stress at high temperature and strain rate. Mech. Res. Commun. 35, 142150 (2008).
27. Wu Q-s., Zheng S-h., Huang Q-y., Liu S-j., and Han Y-y.: Continuous cooling transformation behaviors of CLAM steel. J. Nucl. Mater. 442, S67S70 (2013).
28. Lin Y.C., Chen M.S., and Zhong J.: Microstructure evolution in 42CrMo steel during compression at elevated temperatures. Mater. Lett. 62, 21322135 (2008).
29. Sellars C.M. and McTegart W.J.: On the mechanism of hot deformation. Acta Metall. 14, 11361138 (1966).
30. Srinivasulu S. and Jain A.: A comparative analysis of training methods for artificial neural network rainfall-runoff modes. Appl. Soft. Comput. 6, 295306 (2006).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 15
Total number of PDF views: 99 *
Loading metrics...

Abstract views

Total abstract views: 227 *
Loading metrics...

* Views captured on Cambridge Core between 13th March 2017 - 20th November 2017. This data will be updated every 24 hours.