Skip to main content
×
×
Home

Synthesis and characterization of highly organized crystalline rutile nanoparticles by low-temperature dissolution-reprecipitation process

  • Mohammad Rezaul Karim (a1), Mohammad Tauhidul Islam Bhuiyan (a2), Mushtaq Ahmad Dar (a3), Asiful Hossain Seikh (a3), Muhammad Ali Shar (a3), Mohammed Badruz Zaman (a4), Chul Jae Lee (a5), Hee Jin Kim (a6) and Mu Sang Lee (a7)...
Abstract
Abstract

Rutile nanoparticles have been synthesized by acid hydrolysis of titanium isopropoxide by low-temperature dissolution-reprecipitation process. High-resolution transmission electron micrographs of the rutile colloidal solution show needle-shaped rutile nanoparticles with the dimensions of 10–30 nm in diameter and 100–150 nm in length. X-ray diffraction (XRD) data show the existence of only the rutile polymorph in TiO2 powder with a crystallite size of 11.3 nm. The dielectric constant of rutile nanoparticles has been found to be 57 at 10 MHz AC frequency and DC conductance as 2.3 × 10−6 S/cm. Transmission electron micrographs and XRD data analysis imply that the rutile crystallites are self-organized in a regular fashion to produce multilayer three-dimensional linear clusters. The clusters have been found to be microporous (average porosity 1.4 nm) with high specific surface area (132.2 m2/g). At higher concentration, the clusters aggregate to produce interconnected network of star- or flower-like structures. This organized crystalline microporous metal-oxide semiconductor might find various practical applications.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: mkarim@ksu.edu.sa
References
Hide All
1. Senna M., Myers N., Aimable A., Laporte V., Pulgarin C., Baghriche O., and Bowen P.: Modification of titania nanoparticles for photocatalytic antibacterial activity via a colloidal route with glycine and subsequent annealing. J. Mater. Res. 28, 354 (2013).
2. Wu J.M.: Tin-doped rutile titanium dioxide nanowires: Luminescence, gas sensor, and field emission properties. J. Nanosci. Nanotechnol. 12, 1434 (2012).
3. Karim M.R., Yeum J.H., Lee M.S., and Lim K.T.: Preparation of conducting polyaniline/TiO2 composite submicron-rods by the γ-radiolysis oxidative polymerization method. React. Funct. Polym. 68, 1371 (2008).
4. Xu J., Jia C., Cao B., and Zhang W.F.: Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries. Electrochim. Acta 52, 8044 (2007).
5. Baudrin E., Cassaignon S., Koelsch M., Jolivet J.P., Dupont L., and Tarascon J.M.: Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature. Electrochem. Commun. 9, 337 (2007).
6. Kim S.L., Jang S.R., Vittal R., Lee J., and Kim K.J.: Rutile TiO2-modified multi-wall carbon nanotubes in TiO2 film electrodes for dye-sensitized solar cells. J. Appl. Electrochem. 36, 1433 (2006).
7. Byun H.Y., Vittal R., Kim D.Y., and Kim K.J.: Beneficial role of cetyltrimethylammonium bromide in the enhancement of photovoltaic properties of dye-sensitized rutile TiO2 solar cells. Langmuir 20, 6853 (2004).
8. Karim M.R., Lim K.T., Lee M.S., Kim K., and Yeum J.H.: Sulfonated polyaniline–titanium dioxide nanocomposites synthesized by one-pot UV-curable polymerization method. Synth. Met. 159, 209 (2009).
9. Karim M.R., Lee H.W., Cheong I.W., Park S.M., Oh W., and Yeum J.H.: Conducting polyaniline‐titanium dioxide nanocomposites prepared by inverted emulsion polymerization. Polym. Compos. 31, 83 (2010).
10. Kadoshima M., Hiratani M., Shimamoto Y., Torii K., Miki H., Kimura S., and Nabatame T.: Rutile-type TiO2 thin film for high-k gate. Thin Solid Films 424, 224 (2003).
11. Abazovic N.D., Comor M.I., Dramicanin M.D., Jovanovic D.J., Ahrenkiel S.P., and Nedeljkovic J.M.: Photoluminescence of anatase and rutile TiO2 particles. J. Phys. Chem. B 110, 25366 (2006).
12. Wu J.M., Shih H.C., and Wu W.T.: Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation. Nanotechnology 17, 105 (2006).
13. Zhu Y., Shi J., Zhang Z., Zhang C., and Zhang X.: Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide. Anal. Chem. 74, 120 (2001).
14. Corrales T.P., Allen N.S., Edge M., Sandoval G., and Catalina F.: A chemiluminescence study of micron and nanoparticle titanium dioxide: Effect on the thermal stability of metallocene polyethylene. J. Photochem. Photobiol., A 156, 151 (2003).
15. Yin S., Li R., He Q., and Sato T.: Low temperature synthesis of nanosize rutile titania crystal in liquid media. Mater. Chem. Phys. 75, 76 (2002).
16. Wang L., Yuan Z., and Egerton T.A.: The effects of different acids on the preparation of TiO2 nanostructure in liquid media at low temperature. Mater. Chem. Phys. 133, 304 (2012).
17. Park S.D., Cho Y.H., Kim W.W., and Kim S-J.: Understanding of homogeneous spontaneous precipitation for monodispersed TiO2 ultrafine powders with rutile phase around room temperature. J. Solid State Chem. 146, 230 (1999).
18. Ovenstone J.: Preparation of novel titania photocatalysts with high activity. J. Mater. Sci. 36, 1325 (2001).
19. Navrotsky A. and Kleppa O.J.: Enthalpy of the anatase-rutile transformation. J. Am. Ceram. Soc. 50, 626 (1967).
20. JCPDS—International Centre for Diffraction Data, 2003, PCPDFWIN v. 2.4.
21. Klug H.P. and Alexander L.E.: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1954); 491 pp.
22. Danilchenko S.N., Kukharenko O.G., Moseke C., Protsenko I.Y., Sukhodub L.F., and Sulkio-Cleff B.: Determination of the bone mineral crystallite size and lattice strain from diffraction line broadening. Cryst. Res. Technol. 37, 1234 (2002).
23. Watson S., Beydoun D., Scott J., and Amal R.: Preparation of nanosized crystalline TiO2 particles at low temperature for photocatalysis. J. Nanopart. Res. 6, 193 (2004).
24. Porto S.P.S., Fleury P.A., and Damen T.C.: Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2 . Phys. Rev. 154, 522 (1967).
25. Hanaor D.A.H. and Sorrell C.C.: Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855 (2011).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 5
Total number of PDF views: 32 *
Loading metrics...

Abstract views

Total abstract views: 249 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd December 2017. This data will be updated every 24 hours.