Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-14T10:30:01.233Z Has data issue: false hasContentIssue false

Synthesis of high surface area TiO2 coatings on stainless steel by electrophoretic deposition

Published online by Cambridge University Press:  22 July 2013

Daniel Schiemann
Affiliation:
Université de Toulouse, CIRIMAT UPS-CNRS, 31062 Toulouse cedex 9, France
Pierre Alphonse
Affiliation:
Université de Toulouse, CIRIMAT UPS-CNRS, 31062 Toulouse cedex 9, France
Pierre-Louis Taberna*
Affiliation:
Université de Toulouse, CIRIMAT UPS-CNRS, 31062 Toulouse cedex 9, France
*
a)Address all correspondence to this author. e-mail: taberna@chimie.ups-tlse.fr
Get access

Abstract

Large surface area, homogenous, and adhesive TiO2 coatings on stainless steel substrates were prepared by electrophoretic deposition (EPD) of colloidal dispersions of TiO2 nanoparticles in water and ethanol. Several chemical additives were used to optimize the deposition process. The best results were obtained for dispersions in water containing a mixture of Tiron and Pluronic® F127, which gave homogeneous layers, showing excellent adhesion and a large BET surface area, close to 200 m2/g. Ethanol dispersions also gave much adhesive coatings when poly(acrylic acid) was used as an additive. Nevertheless, their thickness was lower, and their surface area was less than 100 m2/g. We have shown that water splitting, occurring in the aqueous sol during the EPD, led to deposited masses lower than those expected from the Hamaker law. However, the electrolysis of water and also the small cracks in the coatings had no detrimental effects on adhesion.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tauster, S.J., Fung, S.C., and Garten, R.L.: Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 100, 170 (1978).CrossRefGoogle Scholar
Dulub, O., Hebenstreit, W., and Diebold, U.: Imaging cluster surfaces with atomic resolution: The strong metal-support interaction state of Pt supported on TiO2(110). Phys. Rev. Lett. 84, 3646 (2000).CrossRefGoogle ScholarPubMed
Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995).CrossRefGoogle Scholar
Barbé, C.J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V., and Grätzel, M.: Nanocrystalline titanium oxide electrodes for photovoltaic applications. J. Am. Ceram. Soc. 80, 3157 (1997).CrossRefGoogle Scholar
Haas-Santo, K., Fichtner, M., and Schubert, K.: Preparation of microstructure compatible porous supports by sol–gel synthesis for catalyst coatings. Appl. Catal., A 220, 79 (2001).CrossRefGoogle Scholar
Kolb, G. and Hessel, V.: Micro-structured reactors for gas phase reactions. Chem. Eng. J. 98, 1 (2004).CrossRefGoogle Scholar
Thormann, J., Pfeifer, P., Schubert, K., and Kunz, U.: Reforming of diesel fuel in a micro reactor for APU systems. Chem. Eng. J. 135(Suppl 1), S74 (2008).CrossRefGoogle Scholar
Uchikoshi, T., Suzuki, T.S., Tang, F., Okuyama, H., and Sakka, Y.: Crystalline-oriented TiO2 fabricated by the electrophoretic deposition in a strong magnetic field. Ceram. Int. 30, 1975 (2004).CrossRefGoogle Scholar
Negishi, N., Takeuchi, K., and Ibusuki, T.: Preparation of the TiO2 thin film photocatalyst by the dip-coating process. J. Sol-Gel Sci. Technol. 13, 691 (1998).CrossRefGoogle Scholar
Takahashi, Y. and Matsuoka, Y.: Dip-coating of TiO2 films using a sol derived from Ti(O-i-Pr)4-diethanolamine-H2O-i-PrOH system. J. Mater. Sci. 23, 2259 (1988).CrossRefGoogle Scholar
Watanabe, T., Fukayama, S., Miyauchi, M., Fujishima, A., and Hashimoto, K.: Photocatalytic activity and photo-induced wettability conversion of TiO2 thin film prepared by sol-gel process on a soda-lime glass. J. Sol-Gel Sci. Technol. 19, 71 (2000).CrossRefGoogle Scholar
Besra, L. and Liu, M.: A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 52, 1 (2007).CrossRefGoogle Scholar
Uchikoshi, T., Ozawa, K., Hatton, B.D., and Sakka, Y.: Dense, bubble-free ceramic deposits from aqueous suspensions by electrophoretic deposition. J. Mater. Res. 16, 321 (2001).CrossRefGoogle Scholar
Nold, A. and Clasen, R.: Bubble-free electrophoretic shaping from aqueous suspension with micro point-electrode. J. Europ. Cer. Soc. 30, 2971 (2010).CrossRefGoogle Scholar
Neirinck, B., Fransaer, J., Biest, O.V., and Vleugels, J.: Aqueous electrophoretic deposition in asymmetric AC electric fields (AC-EPD). Electrochem. Commun. 11, 57 (2009).CrossRefGoogle Scholar
Ryan Perera, M.: Pottery section-fabrication by electrophoresis. Trans, J. Brit. Cer. Soc. 80, 46 (1981).Google Scholar
Lin, C., Yang, T., Feng, Y., Tsung, T., and Su, C.: Characterization of elecrophoretically deposited nanocrystalline titanium dioxide films. Surf. Coat. Technol. 200, 3184 (2006).CrossRefGoogle Scholar
Ferrari, B., Moreno, R., Sarkar, P., and Nicholson, P.: Electrophoretic deposition of MgO from organic suspensions. J. Eur. Ceram. Soc. 20, 99 (2000).CrossRefGoogle Scholar
Moskalewicz, T., Czyrska-Filemonowicz, A., and Boccaccini, A.R.: Microstructure of nanocrystalline TiO2 films produced by electrophoretic deposition on Ti-6Al-7Nb alloy. Surf. Coat. Technol. 201, 7467 (2007).CrossRefGoogle Scholar
Castro, Y., Ferrari, B., Moreno, R., and Durán, A.: Electrophoretic deposition (EPD) coatings of sol-gel solutions and suspensions. J. Sol-Gel Sci. Technol. 23, 187 (2002).CrossRefGoogle Scholar
Lebrette, S., Pagnoux, C., and Abélard, P.: Fabrication of titania dense layers by electrophoretic deposition in aqueous media. J. Eur. Ceram. Soc. 26, 2727 (2006).CrossRefGoogle Scholar
Abdullah, H. and Sorrell, C.: TiO2 thick films by electrophoretic deposition. J. Aust. Ceram. Soc. 44, 12 (2008).Google Scholar
Castro, Y., Ferrari, B., Moreno, R., and Durán, A.: Coatings produced by electrophoretic deposition from nano-particulate silica sol–gel suspensions. Surf. Coat. Technol. 182, 199 (2004).CrossRefGoogle Scholar
Wang, G-J. and Chou, S-W.: Electrophoretic deposition of uniformly distributed TiO2 nanoparticles using an anodic aluminum oxide template for efficient photolysis. Nanotechnology 21, 115206 (2010).CrossRefGoogle ScholarPubMed
Sato, K., Kondo, S., Tsukada, M., Ishigaki, T., and Kamiya, H.: Influence of solid fraction on the optimum molecular weight of polymer dispersants in aqueous TiO2 nanoparticle suspensions. J. Am. Ceram. Soc. 90, 3401 (2007).CrossRefGoogle Scholar
Sakamoto, R., Nishimori, H., Tatsumisago, M., and Minami, T.: Preparation of titania thick films by electrophoretic sol-gel deposition using hydrothermally treated particles. Nippon seramikkusu kyokai gakujutsu ronbunshi 106, 1034 (1998).CrossRefGoogle Scholar
Kamiya, H. and Iijima, M.: Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media. Sci. Technol. Adv. Mater. 11, 044304 (2010).CrossRefGoogle ScholarPubMed
Liufu, S., Xiao, H., and Li, Y.: Adsorption of poly(acrylic acid) onto the surface of titanium dioxide and the colloidal stability of aqueous suspension. J. Colloid Interface Sci. 281, 155 (2005).CrossRefGoogle ScholarPubMed
Fukada, Y., Nagarajan, N., Mekky, W., Bao, Y., Kim, H.S., and Nicholson, P.: Electrophoretic deposition—mechanisms, myths and materials. J. Mater. Sci. 39, 787 (2004).CrossRefGoogle Scholar
Sentein, C., Guizard, B., Giraud, S., , C., and Ténégal, F.: Dispersion and stability of TiO2 nanoparticles synthesized by laser pyrolysis in aqueous suspensions. J. Phys. Conf. Ser. 170, 012013 (2009).CrossRefGoogle Scholar
Tang, F., Uchikoshi, T., Ozawa, K., and Sakka, Y.: Effect of polyethylenimine on the dispersion and electrophoretic deposition of nano-sized titania aqueous suspensions. J. Eur. Ceram. Soc. 26, 1555 (2006).CrossRefGoogle Scholar
Laucournet, R., Pagnoux, C., Chartier, T., and Baumard, J-F.: Coagulation method of aqueous concentrated alumina suspensions by thermal decomposition of hydroxyaluminum diacetate. J. Am. Ceram. Soc. 83, 2661 (2000).CrossRefGoogle Scholar
Mancini, M., Nobili, F., Tossici, R., and Marassi, R.: Study of the electrochemical behaviour at low temperatures of green anodes for lithium ion batteries prepared with anatase TiO2 and water soluble sodium carboxymethyl cellulose binder. Electrochim. Acta 85, 566571 (2012).CrossRefGoogle Scholar
Zhao, W., Bai, Z., Ren, A., Guo, B., and Wu, C.: Sunlight photocatalytic activity of CdS modified TiO2 loaded on activated carbon fibers. Appl. Surf. Sci. 256, 3493 (2010).CrossRefGoogle Scholar
BASF: Pluronic F127 Technical Bulletin. (BASF, Nienburg, Germany, 2012). http://worldaccount.basf.com/wa/NAFTA∼en_US/Catalog/ChemicalsNAFTA/pi/BASF/Brand/pluronicGoogle Scholar
Bleta, R., Alphonse, P., and Lorenzato, L.: Nanoparticle route for the preparation in aqueous medium of mesoporous TiO2 with controlled porosity and crystalline framework. J. Phys. Chem. C 114, 2039 (2010).CrossRefGoogle Scholar
Alphonse, P., Varghese, A., and Tendero, C.: Stable hydrosols for TiO2 coatings. J. Sol-Gel Sci. Technol. 56, 250 (2010).CrossRefGoogle Scholar
Sarkar, P. and Nicholson, P.S.: Electrophoretic deposition (EPD): Mechanisms, kinetics, and application to ceramics. J. Am. Ceram. Soc. 79, 1987 (1996).CrossRefGoogle Scholar
Baldisserri, C., Gardini, D., and Galassi, C.: An analysis of current transients during electrophoretic deposition (EPD) from colloidal TiO2 suspensions. J. Colloid Interface Sci. 347, 102 (2010).CrossRefGoogle ScholarPubMed
Ferrari, B., Moreno, R., and Cuesta, J.A.: A resistivity model for electrophoretic deposition. Key Eng. Mater. 314, 175 (2006).CrossRefGoogle Scholar