Skip to main content

Synthesis of nickel sulfides of different phases for counter electrodes in dye-sensitized solar cells by a solvothermal method with different solvents

  • Xiao Yang (a1), Lei Zhou (a1), Ali Feng (a1), Huaibao Tang (a1), Haijun Zhang (a1), Zongling Ding (a1), Yongqing Ma (a1), Mingzai Wu (a1), Shaowei Jin (a1) and Guang Li (a2)...

Two phases of nickel sulfide (α-NiS and β-NiS) nanoarchitectures were successfully and controllably synthesized by a facile solvothermal method with two different solvents of alcohol and water, respectively. The products were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, and UV-vis diffuse reflectance spectrophotometer. The sphere-like shape for α-NiS and cross-like shape composed of nanorods for β-NiS are uniform and well distributed as well as their size. Both α-NiS and β-NiS powders were used as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). It is found that the DSSC with an α-NiS CE performs much better than the one with a β-NiS CE. The energy conversion efficiency of the former was 5.2%, whereas the latter was 4.2%, about 20% increment.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Oregan B. and Grätzel M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737740 (1991).
2.Ito S., Murakami T.N., Comte P., Liska P., Grätzel C., Nazeeruddin M.K., and Grätzel M.: Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516, 46134619 (2008).
3.Hagfeldt A., Boschloo G., Sun L.C., Kloo L., and Pettersson H.: Dye-sensitized solar cells. Chem. Rev. 110, 65956663 (2010).
4.Prasittichai C. and Hupp J.T.: Surface modification of SnO2 photoelectrodes in dye-sensitized solar cells: Significant improvements in photovoltage via Al2O3 atomic layer deposition. Phys. Chem. Lett. 1, 16111615 (2010).
5.Yella A., Lee H.W., Tsao H.N., Yi C., Chandiran A.K., Nazeeruddin M.K., Diau E.W.G., Yeh C.Y., Zakeeruddin S.M., and Grätzel M.: Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334, 629634 (2011).
6.Wang M., Anghel A.M., Marsan B., Ha N.L.C., Pootrakulchote N., Zakeeruddin S.M., and Grätzel M.: CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. J. Am. Chem. Soc. 131, 1597615977 (2009).
7.Li Z., Gong F., Zhou G., and Wang Z-S.: NiS2/reduced graphene oxide nanocomposites for efficient dyesensitized solar cells. J. Phys. Chem. C 117, 65616566 (2013).
8.Chen X. and Yang H.G.: Low-cost SnSx counter electrodes for dye-sensitized solar cells. Chem. Commun. 49, 57935795 (2013).
9.Park J., Koo B., Yoon K.Y., Hwang Y., Kang M., Park J-G., and Hyeon T.: Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal–phosphine complexes using a syringe pump. J. Am. Chem. Soc. 127, 84338440 (2005).
10.Tai S.Y., Liu C.J., Chou S.W., Chien F.S-S., Lin J-Y., and Lin T-W.: Few-layer MoS2 nanosheets coated onto multi-walled carbon nanotubes as a low-cost and highly electrocatalytic counter electrode for dye-sensitized solar cells. J. Mater. Chem. 22, 2475324759 (2012).
11.Fang B., Fan S-Q., Kim J.H., Kim M-S., Kim M., Chaudhari N.K., Ko J., and Yu J-S.: Incorporating hierarchical nanostructured carbon counter electrode into metal-free organic dye-sensitized solar cell. Langmuir 26, 1123811243 (2010).
12.Pan Q., Xie J., Liu S.Y., Cao G.S., Zhu T.J., and Zhao X.B.: Facile one-pot synthesis of ultrathin NiS nanosheets anchored on graphene and the improved electrochemical Li-storage properties. RSC Adv. 3, 38993906 (2013).
13.Sohrabnezhad S., Pourahmad A., Sadjadi M.S., and Zanjanchi M.A.: Growth and characterization of NiS and NiCoS nanoparticles in mordenite zeolite host. Mater. Sci. Eng. C 28, 202205 (2008).
14.Larsson S.: Localization of electrons and excitations. Chem. Phys. 326 115122 (2006).
15.Ku Z.L. and Han H.W.: Transparent NiS counter electrodes for thiolate/disulfide mediated dye-sensitized solar cells. J. Mater. Chem. A 1, 237240 (2013).
16.Sun H.C., Qin D., Huang S.Q., Guo X.Z., Li D.M., Luo Y.H., and Meng Q.B.: Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ. Sci. 4, 26302637 (2011).
17.Ghezelbash A., Sigman M.B., and Korgel B.A.: Solventless synthesis of nickel sulfide nanorods and triangular nanoprisms. Nano Lett. 4, 537542 (2004).
18.Hupp J.T. and Poeppelmeier K.R.: Better living through nanopore chemistry. Science 309, 20082009 (2005).
19.Gou X.L., Cheng F.Y., Shi Y.H., Zhang L., Peng S.J., Chen H., and Shen P.W.: Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S,Se)2 nano-/microstructures via facile solution route. J. Am. Chem. Soc. 128, 72227229 (2006).
20.Abdelhady A.L., Malik M.A., O'Brien P., and Tuna F.: Nickel and iron sulfide nanoparticles from thiobiurets. J. Phys. Chem. C 116, 22532259 (2012).
21.Roosen A.R. and Carter W.C.: Simulations of microstructural evolution: Anisotropic growth and coarsening. Physica A 261, 232247 (1998).
22.Li H., Chai L., Wang X., Xi G., Liu Y., and Qian Y.: Hydrothermal, growth and morphology modification of β-NiS three-dimensional flowerlike architectures. Cryst. Growth Des. 7, 19181922 (2007).
23.Du Y.P., Yin Z.Y., Zhu J.X., Huang X., Wu X.J., Zeng Z.Y., Yan Q. Y., and Zhang H.: A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat. Commun. 3, 11771183 (2012).
24.Hu Y., Chen J.F., Chen W.M., Lin X.H., and Li X.L.: Synthesis of novel sulfide submicrometer hollow spheres. Adv. Mater. 15, 726729 (2003).
25.Nakamura M., Fujimori A., Sacchi M., Fuggle J.C., Misu A., mamori T., Tamura H., Matoba M., and Anzai S.: Metal-nonmetal transition in NiS induced by Fe and Co substitution: X-ray-absorption spectroscopic study. Phys. Rev. B 48, 1694216947 (1993).
26.Nyari T., Barvinschi P., Bǎies R., Vlǎzan P., Barvinschi F., and Dekany I.: Experimental and numerical results in hydrothermal synthesis of CuInS2 compound semiconductor nanocrystals. J. Cryst. Growth 275, e2383e2387 (2005).
27.Okamura H., Naitoh J., Nanba T., Matoba M., Nishioka M., Anzai S., Shimoyama I., Fukui K., Miura H., Nakagawa H., Nakagawa K., and Kinoshita T.: Optical study of the metal–nonmetal transition in Ni1-δS. Solid State Commun. 112, 9195 (1999).
28.Cho S., Hwang S.H., Kim C., and Jang J.: Polyaniline porous counter-electrodes for high performance dye-sensitized solar cells. J. Mater. Chem. 22, 1216412171(2012).
29.Yella A., Lee H-W., Tsao H.N., Yi C., Chandiran A.K., Nazeeruddin M.K., Diau E.W-G., Yeh C-Y., Zakeeruddin S.M., and Grätzel M.: Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334, 629633 (2011).
30.Grätzel M.: Dye-sensitized solar cells. J. Phys. Chem. C 4, 145153(2003).
31.Jiang Q.W., Li G.R., and Gao X.P.: Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells. Chem. Commun. 44, 67206722 (2009).
32.Nazeeruddin M.K., Kay A., Rodicio I., Humphry-Baker R., Muller E., Liska P., Vlachopoulos N., and Grätzel M.: Conversion of light to electricity by cis-X2bis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl, Br, I, CN, and SCN–) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 115, 63826390 (1993).
33.Zhang X.N., Zhang J., Cui Y.Y., Feng J.J., and Zhu Y.J.: Carbon/polymer composite counter-electrode application in dye-sensitized solar cells. J. Appl. Polym. Sci. 128, 7579 (2013).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 3
Total number of PDF views: 18 *
Loading metrics...

Abstract views

Total abstract views: 188 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd November 2017. This data will be updated every 24 hours.