Skip to main content

Synthesis of TiO2 nanosheet photocatalysts from exfoliation of TiS2 and hydrothermal treatment

  • Hangkun Jing (a1), Qian Cheng (a1), J. Mark Weller (a1), Ximo S. Chu (a1), Qing Hua Wang (a1) and Candace K. Chan (a1)...

TiO2 nanomaterials with platelet or nanosheet morphologies can offer improved properties for photocatalytic applications, but established methods to produce them typically require structure-directing agents since anatase-phase TiO2 does not have a layered structure. In the present work, the preparation of TiO2 nanosheets by the chemical oxidation of TiS2 nanosheets is demonstrated. Electrochemical exfoliation of bulk TiS2 into TiS2 nanosheets, followed by the hydrothermal treatment at 180 °C for 14 h is performed. The results show that polycrystalline TiO2 nanosheets with the anatase structure are formed, and that the nanosheet morphology can still be maintained after the hydrothermal treatment. The TiO2 nanosheets show good photocatalytic activity for the degradation of methylene blue, but the performance is negatively affected by the residual carbon black that was needed in the TiS2 electrode to enable electrochemical exfoliation. These results show that conversion of TiS2 nanosheets to TiO2 nanosheets is a promising synthetic strategy but highlights how the interfacial properties of the obtained materials could be affected by ancillary components in the preparation method.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Synthesis of TiO2 nanosheet photocatalysts from exfoliation of TiS2 and hydrothermal treatment
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Synthesis of TiO2 nanosheet photocatalysts from exfoliation of TiS2 and hydrothermal treatment
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Synthesis of TiO2 nanosheet photocatalysts from exfoliation of TiS2 and hydrothermal treatment
      Available formats
Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Chhowalla, M., Shin, H.S., Eda, G., Li, L-J., Loh, K.P., and Zhang, H.: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263 (2013).
2.Lin, Z., McCreary, A., Briggs, N., Subramanian, S., Zhang, K., Sun, Y., Li, X., Borys, N.J., Yuan, H., Fullerton-Shirey, S.K., Chernikov, A., Zhao, H., McDonnell, S., Lindenberg, A.M., Xiao, K., LeRoy, B.J., Drndić, M., Hwang, J.C.M., Park, J., Chhowalla, M., Schaak, R.E., Javey, A., Hersam, M.C., Robinson, J., and Terrones, M.: 2D materials advances: From large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Mater. 3, 042001 (2016).
3.Zhang, X., Hou, L., Ciesielski, A., and Samorì, P.: 2D materials beyond graphene for high-performance energy storage applications. Adv. Energy Mater. 6, 1600671 (2016).
4.Deng, D., Novoselov, K.S., Fu, Q., Zheng, N., Tian, Z., and Bao, X.: Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218 (2016).
5.Hashimoto, K., Irie, H., and Fujishima, A.: TiO2 photocatalysis: A historical overview and future prospects. Jpn. J. Appl. Phys. 44, 8269 (2005).
6.Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J.L., Horiuchi, Y., Anpo, M., and Bahnemann, D.W.: Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 114, 9919 (2014).
7.Pan, X.Y., Chen, X.X., and Yi, Z.G.: Defective, porous TiO2 nanosheets with Pt decoration as an efficient photocatalyst for ethylene oxidation synthesized by a C3N4 templating method. ACS Appl. Mater. Interfaces 8, 10104 (2016).
8.Zhang, J., Zhu, Z.P., Tang, Y.P., Müllen, K., and Feng, X.L.: Titania nanosheet-mediated construction of a two-dimensional titania/cadmium sulfide heterostructure for high hydrogen evolution activity. Adv. Mater. 26, 734 (2014).
9.Yang, H.G., Sun, C.H., Qiao, S.Z., Zou, J., Liu, G., Smith, S.C., Cheng, H.M., and Lu, G.Q.: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638 (2008).
10.Han, X.G., Kuang, Q., Jin, M.S., Xie, Z.X., and Zheng, L.S.: Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 131, 3152 (2009).
11.Wen, P.H., Itoh, H., Tang, W.P., and Feng, Q.: Single nanocrystals of anatase-type TiO2 prepared from layered titanate nanosheets: Formation mechanism and characterization of surface properties. Langmuir 23, 11782 (2007).
12.Wen, P.H., Ishikawa, Y., Itoh, H., and Feng, Q.: Topotactic transformation reaction from layered titanate nanosheets into anatase nanocrystals. J. Phys. Chem. C 113, 20275 (2009).
13.Chen, C.D., Xu, L.F., Sewvandi, G.A., Kusunose, T., Tanaka, Y., Nakanishi, S., and Feng, Q.: Microwave-assisted topochemical conversion of layered titanate nanosheets to {010}-faceted anatase nanocrystals for high performance photocatalysts and dye-sensitized solar cells. Cryst. Growth Des. 14, 5801 (2014).
14.Yuan, H.Y., Besselink, R., Liao, Z.L., and ten Elshof, J.E.: The swelling transition of lepidocrocite-type protonated layered titanates into anatase under hydrothermal treatment. Sci. Rep. 4, 4584 (2014).
15.Wang, L.Z. and Sasaki, T.: Titanium oxide nanosheets: Graphene analogues with versatile functionalities. Chem. Rev. 114, 9455 (2014).
16.Cheng, Q., Yang, T., Li, M., and Chan, C.K.: Oxidation–reduction assisted exfoliation of LiCoO2 into nanosheets and reassembly into functional Li-ion battery cathodes. J. Mater. Chem. A 4, 6902 (2016).
17.Cheng, Q., Yang, T., Li, M., and Chan, C.K.: Exfoliation of LiNi1/3Mn1/3Co1/3O2 into nanosheets using electrochemical oxidation and reassembly with dialysis or flocculation. Langmuir 33, 9271 (2017).
18.Zeng, Z.Y., Yin, Z.Y., Huang, X., Li, H., He, Q.Y., Lu, G., Boey, F., and Zhang, H.: Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem., Int. Ed. 50, 11093 (2011).
19.Zeng, Z.Y., Sun, T., Zhu, J.X., Huang, X., Yin, Z.Y., Lu, G., Fan, Z.X., Yan, Q.Y., Hng, H.H., and Zhang, H.: An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem., Int. Ed. 51, 9052 (2012).
20.Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T., and Matsumura, M.: Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal., A 265, 115 (2004).
21.Ho, W.K., Yu, J.C., and Lee, S.C.: Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. J. Solid State Chem. 179, 1171 (2006).
22.Xiang, Q.J., Yu, J.G., and Jaroniec, M.: Nitrogen and sulfur Co-doped TiO2 nanosheets with exposed {001} facets: Synthesis, characterization and visible-light photocatalytic activity. Phys. Chem. Chem. Phys. 13, 4853 (2011).
23.Li, Z.H., Zhu, Y.L., Pang, F.X., Liu, H.Y., Gao, X.G., Ou, W., Liu, J.W., Wang, X., Cheng, X.D., and Zhang, Y.F.: Synthesis of N doped and N, S co-doped 3D TiO2 hollow spheres with enhanced photocatalytic efficiency under nature sunlight. Ceram. Int. 41, 10063 (2015).
24.Lin, Y-C., Chien, T-E., Lai, P-C., Chaing, Y-H., Li, K-L., and Lin, J-L.: TiS2 transformation into S-doped and N-doped TiO2 with visible-light catalytic activity. Appl. Surf. Sci. 359, 1 (2015).
25.Umebayashi, T., Yamaki, T., Itoh, H., and Asai, K.: Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett. 81, 454 (2002).
26.Lim, Y.W.L., Tang, Y.X., Cheng, Y.H., and Chen, Z.: Morphology, crystal structure and adsorption performance of hydrothermally synthesized titania and titanate nanostructures. Nanoscale 2, 2751 (2010).
27.Zeng, Z.Y., Tan, C.L., Huang, X., Bao, S.Y., and Zhang, H.: Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy Environ. Sci. 7, 797 (2014).
28.Whittingham, M.S.: Electrical energy storage and intercalation chemistry. Science 192, 1126 (1976).
29.Long, E., O’Brien, S., Lewis, E.A., Prestat, E., Downing, C., Cucinotta, C.S., Sanvito, S., Haigh, S.J., and Nicolosi, V.: An in situ and ex situ TEM study into the oxidation of titanium(IV) sulphide. npj 2D Mater. Appl. 1, 22 (2017).
30.Zhang, W.F., He, Y.L., Zhang, M.S., Yin, Z., and Chen, Q.: Raman scattering study on anatase TiO2 nanocrystals. J. Phys. D: Appl. Phys. 33, 912 (2000).
31.Let, A.L., Mainwaring, D.E., Rix, C., and Murugaraj, P.: Thio sol–gel synthesis of titanium disulfide thin films and powders using titanium alkoxide precursors. J. Non-Cryst. Solids 354, 1801 (2008).
32.Chianelli, R.R., Scanlon, J.C., and Thompson, A.H.: Structure refinement of stoichiometric TiS2. Mater. Res. Bull. 10, 1379 (1975).
33.Howard, C.J., Sabine, T.M., and Dickson, F.: Structure and thermal parameters for rutile and anatase. Acta Crystallogr., Sect. B: Struct. Sci. 47, 462 (1991).
34.Faba, M.G., Gonbeau, D., and Pfister-Guillouzo, G.: Core and valence spectra of titanium dichalcogenides TiX2 (where X is O, S). Experimental and theoretical studies. J. Electron Spectrosc. Relat. Phenom. 73, 65 (1995).
35.Martinez, H., Auriel, C., Gonbeau, D., Loudet, M., and Pfister-Guillouzo, G.: Studies of 1T TiS2 by STM, AFM, and XPS: The mechanism of hydrolysis in air. Appl. Surf. Sci. 93, 231 (1996).
36.Oh, D.Y., Choi, Y.E., Kim, D.H., Lee, Y-G., Kim, B-S., Park, J., Sohn, H., and Jung, Y.S.: All-solid-state lithium-ion batteries with TiS2 nanosheets and sulphide solid electrolytes. J. Mater. Chem. A 4, 10329 (2016).
37.Iwabuchi, A., Choo, K.C., and Tanaka, K.: Titania nanoparticles prepared with pulsed laser ablation of rutile single crystals in water. J. Phys. Chem. B 108, 10863 (2004).
38.Bayati, M.R., Moshfegh, A.Z., and Golestani-Fard, F.: On the photocatalytic activity of the sulfur doped titania nano-porous films derived via micro-arc oxidation. Appl. Catal., A 389, 60 (2010).
39.Lin, Y-H., Chou, S-H., and Chu, H.: A kinetic study for the degradation of 1,2-dichloroethane by S-doped TiO2 under visible light. J. Nanopart. Res 16, 2539 (2014).
40.Colón, G., Hidalgo, M.C., Munuera, G., Ferino, I., Cutrufello, M.G., and Navío, J.A.: Structural and surface approach to the enhanced photocatalytic activity of sulfated TiO2 photocatalyst. Appl. Catal., B 63, 45 (2006).
41.Tang, X.H. and Li, D.Y.: Sulfur-doped highly ordered TiO2 nanotubular arrays with visible light response. J. Phys. Chem. C 112, 5405 (2008).
42.Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., and Herrmann, J.M.: Photocatalytic degradation pathway of methylene blue in water. Appl. Catal., B 31, 145 (2001).
43.Li, X.Z. and Li, F.B.: Study of Au/Au3+–TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environ. Sci. Technol. 35, 2381 (2011).
44.Xie, G.C., Zhang, K., Guo, B.D., Liu, Q., Fang, L., and Gong, J.R.: Graphene-based materials for hydrogen generation from light-driven water splitting. Adv. Mater. 25, 3820 (2013).
45.Velo-Gala, I., López-Peñalver, J.J., Sánchez-Polo, M., and Rivera-Utrilla, J.: Activated carbon as photocatalyst of reactions in aqueous phase. Appl. Catal., B 142, 694 (2013).
46.Zhang, J.M., Vasei, M., Sang, Y.H., Liu, H., and Claverie, J.P.: TiO2@carbon photocatalysts: The effect of carbon thickness on catalysis. ACS Appl. Mater. Interfaces 8, 1903 (2016).
47.Lin, C.W., Zhu, X.J., Feng, J., Wu, C.Z., Hu, S.L., Peng, J., Guo, Y.Q., Peng, L.L., Zhao, J.Y., Huang, J.L., Yang, J.L., and Xie, Y.: Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes. J. Am. Chem. Soc. 135, 5144 (2013).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Jing et al. supplementary material
Table SI and Figures S1-S9

 PDF (628 KB)
628 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed