Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T11:58:15.131Z Has data issue: false hasContentIssue false

Synthesis of YAG:Ce/ZnO core/shell nanoparticles with enhanced UV-visible and visible light photocatalytic activity and application for the antibiotic removal from aqueous media

Published online by Cambridge University Press:  26 February 2019

Lobna Zammouri
Affiliation:
Faculté des Sciences de Tétouan, Laboratoire de l’Eau, d’Etude et des Analyses Environnementales, Université Abdelmalek Essaadi, Tétouan 93002, Morocco; and Université Clermont Auvergne, Institut de Chimie de Clermont Ferrand UMR 6296 CNRS/UBP/Sigma Clermont, Aubiere Cedex 63178, France
Abdelhay Aboulaich*
Affiliation:
Université Clermont Auvergne, Institut de Chimie de Clermont Ferrand UMR 6296 CNRS/UBP/Sigma Clermont, Aubiere Cedex 63178, France
Bruno Capoen
Affiliation:
Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM), CNRS (UMR 8523), CERLA/IRCICA, Université Lille 1-Sciences et Technologies, F-59655 Villeneuve d’ascq Cedex, France
Mohamed Bouazaoui
Affiliation:
Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM), CNRS (UMR 8523), CERLA/IRCICA, Université Lille 1-Sciences et Technologies, F-59655 Villeneuve d’ascq Cedex, France
Mohamed Sarakha
Affiliation:
Université Clermont Auvergne, Institut de Chimie de Clermont Ferrand UMR 6296 CNRS/UBP/Sigma Clermont, Aubiere Cedex 63178, France
Mostafa Stitou
Affiliation:
Faculté des Sciences de Tétouan, Laboratoire de l’Eau, d’Etude et des Analyses Environnementales, Université Abdelmalek Essaadi, Tétouan 93002, Morocco
Rachid Mahiou*
Affiliation:
Université Clermont Auvergne, Institut de Chimie de Clermont Ferrand UMR 6296 CNRS/UBP/Sigma Clermont, Aubiere Cedex 63178, France
*
a)Address all correspondence to these authors. e-mail: a.abdelhay@hotmail.com
Get access

Abstract

We report the first synthesis of highly homogenous Ce-doped YAG/ZnO core/shell nanoparticles (YAG:Ce/ZnO CSN) based on the hydrolysis/condensation of Zn(OAc)2 on the surface of YAG:Ce nanoparticles (NPs). Results show that YAG:Ce NPs of about 100 nm diameter are homogenously surrounded by a multilayer of highly crystallized ZnO nanocrystals (ZnO NCs) of 10–15 nm diameter with a core/shell structure. The as-prepared nanostructures have been used in the photocatalytic degradation of sulfathiazole (STZ), which is a molecule widely used as antibiotic, under UV-vis and visible light. The effect of YAG:Ce/ZnO weight ratio and YAG:Ce particle size on the photocatalytic efficiency of YAG:Ce/ZnO core/shell structures has been studied. The YAG:Ce/ZnO weight ratio of 1/1 was found to yield the optimal photocatalytic activity. Results also showed that YAG:Ce/ZnO CSN with 100 nm core size exhibited much higher photocatalytic activity compared to YAG:Ce/ZnO CSN with micro-sized YAG;Ce core. The recyclability of YAG:Ce/ZnO CSN photocatalyst was also demonstrated over at least 10 photocatalytic degradation cycles.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kummerer, K.: Pharmaceuticals in the environment, Sources, fate, effects and risks. In Pharmaceuticals in the Environment—Scope of the Book and Introduction, K. Klaus, ed. (Springer-Verlag, Heidelberg, 2001); ch. 1, pp. 311.CrossRefGoogle Scholar
Kummerer, K.: Antibiotics in the aquatic environment—A review—Part I. Chemosphere 75, 417 (2009).CrossRefGoogle ScholarPubMed
Sukul, P. and Spitteler, M.: Sulfonamides in the environment as veterinary drugs. Environ. Contam. Toxicol. 187, 67 (2006).CrossRefGoogle ScholarPubMed
Baran, W., Sochacka, J., and Wardas, W.: Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions. Chemosphere 65, 1295 (2006).CrossRefGoogle ScholarPubMed
Baran, W., Adamek, E., Ziemiańska, J., and Sobczak, A.: Effects of the presence of sulfonamides in the environment and their influence on human health. J. Hazard. Mater. 196, 1 (2011).CrossRefGoogle ScholarPubMed
Holtslander, C.: Environmental contamination of ecosystems from antibiotic use in livestock production. Petition addressed to the auditor general of Canada. Available at: http://www.oag-bvg.gc.ca/internet/English/pet_190_e_28926.html (accessed October 11, 2018).Google Scholar
Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995).CrossRefGoogle Scholar
Jiang, X., Ma, Y., Zhao, C., Chen, Y., Cui, M., Yu, J., and He, Y.: Synthesis of flower-like AgI/Bi5O7I hybrid photocatalysts with enhanced photocatalytic activity in rhodamine B degradation. J. Mater. Res. 33, 2385 (2018).CrossRefGoogle Scholar
Wang, M., Peng, Z., Li, H., Zhao, Z., and Fu, X.: C fibers@MoO2 nanoparticles core–shell composite: Highly efficient solar-driven photocatalyst. J. Mater. Res. 33, 685 (2018).CrossRefGoogle Scholar
Zhang, F., Wang, L., Xiao, M., Liu, F., Xu, X., and Du, E.: Construction of direct solid-state Z-scheme g-C3N4/BiOI with improved photocatalytic activity for microcystin-LR degradation. J. Mater. Res. 33, 201 (2018).CrossRefGoogle Scholar
Li, H., Zhu, H., Wang, M., Min, X., Fang, M., Huang, Z., and Wu, X.: A new Ag/Bi7Ta3O18 plasmonic photocatalyst with a visible-light-driven photocatalytic activity. J. Mater. Res. 32, 3650 (2017).CrossRefGoogle Scholar
Xu, D., Shi, W., Xu, C., Yang, S., Bai, H., Song, C., and Chen, B.: Hydrothermal synthesis of 3D Ba5Ta4O15 flower-like microsphere photocatalyst with high photocatalytic properties. J. Mater. Res. 31, 2640 (2016).CrossRefGoogle Scholar
Shen, Z., Zhao, Z., Qian, J., Peng, Z., and Fu, X.: Synthesis of WO3−x nanomaterials with controlled morphology and composition for highly efficient photocatalysis. J. Mater. Res. 31, 1065 (2016).CrossRefGoogle Scholar
Wang, Y., Liu, T., Huang, Q., Wu, C., and Shan, D.: Synthesis and their photocatalytic properties of Ni-doped ZnO hollow microspheres. J. Mater. Res. 31, 2317 (2016).CrossRefGoogle Scholar
Qian, J., Zhao, Z., Shen, Z., Zhang, G., Peng, Z., and Fu, X.: A large scale of CuS nano-networks: Catalyst-free morphologically controllable growth and their application as efficient photocatalysts. J. Mater. Res. 30, 3746 (2015).CrossRefGoogle Scholar
Challagulla, S. and Roy, S.: The role of fuel to oxidizer ratio in solution combustion synthesis of TiO2 and its influence on photocatalysis. J. Mater. Res. 32, 2764 (2017).CrossRefGoogle Scholar
Li, S., Tao, Q., Li, D., Liu, K., and Zhang, Q.: Photocatalytic growth and plasmonic properties of Ag nanoparticles on TiO2 films. J. Mater. Res. 30, 304 (2015).CrossRefGoogle Scholar
Li, F., Han, T., Wang, H., Zheng, X., Wan, J., and Ni, B.: Morphology evolution and visible light driven photocatalysis study of Ti3+ self-doped TiO2−x nanocrystals. J. Mater. Res. 32, 1563 (2017).CrossRefGoogle Scholar
Atla, S., Chen, C., Chen, C., Shih, S., Lin, P., Chung, P., and Chang, Y.: Foam fractionation of ZnO crystal growth and its photocatalysis of the degradation of methylene blue. J. Mater. Res. 27, 2503 (2012).CrossRefGoogle Scholar
Zhang, W., Wang, C., Liu, X., and Li, J.: Enhanced photocatalytic activity in porphyrin-sensitized TiO2 nanorods. J. Mater. Res. 32, 2773 (2017).CrossRefGoogle Scholar
Jassby, D., Budarz, J.F., and Wiesner, M.: Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles. Environ. Sci. Technol. 46, 6934 (2012).CrossRefGoogle ScholarPubMed
Hong, Y., Tian, C., Jiang, B., Wu, A., Zhang, Q., Tian, G., and Fu, H.: Facile synthesis of sheet-like ZnO assembly composed of small ZnO particles for highly efficient photocatalysis. J. Mater. Chem. A 1, 5700 (2013).CrossRefGoogle Scholar
Barnes, R.J., Molina, R., Xu, J., Dobson, P.J., and Thompson, I.P.: Comparison of TiO2 and ZnO nanoparticles for photocatalytic degradation of methylene blue and the correlated inactivation of gram-positive and gram-negative bacteria. J. Nanopart. Res. 15, 1432 (2013).CrossRefGoogle Scholar
Rekha, K., Nirmala, N., Nair, M.G., and Anukaliani, A.: Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Phys. B 405, 3180 (2010).CrossRefGoogle Scholar
Chouchene, B., Ben Chaabane, T., Balan, L., Girot, E., Mozet, K., Medjahdi, G., and Schneider, R.: High performance Ce-doped ZnO nanorods for sunlight-driven photocatalysis. Beilstein J. Nanotechnol. 7, 1338 (2016).CrossRefGoogle ScholarPubMed
Dong, S., Feng, J., Fan, M., Pi, Y., Hu, L., Han, X., Liu, M., Sun, J., and Sun, J.: Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: A review. RSC Adv. 5, 14610 (2015).CrossRefGoogle Scholar
Ullah, R. and Dutta, J.: Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J. Hazard. Mater. 156, 194 (2008).CrossRefGoogle ScholarPubMed
Gouvêa, C.A.K., Wypych, F., Moraes, S.G., Durán, N., and Peralta-Zamora, S.: Semiconductor-assisted photodegradation of lignin, dye, and kraft effluent by Ag-doped ZnO. Chemosphere 40, 427 (2000).CrossRefGoogle ScholarPubMed
Ahmad, M., Ahmed, E., Zhang, Y., Khalid, N.R., Xu, J., Ullah, M., and Hong, Z.: Preparation of highly efficient Al-doped ZnO photocatalyst by combustion synthesis. Curr. Appl. Phys. 13, 697 (2013).CrossRefGoogle Scholar
Liu, S., Li, C., Yu, J., and Xiang, Q.: Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers. CrystEngComm 13, 2533 (2011).CrossRefGoogle Scholar
Barick, K.C., Singh, S., Aslam, M., and Bahadur, D.: Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters. Microporous Mesoporous Mater. 134, 195 (2010).CrossRefGoogle Scholar
Achouri, F., Corbel, S., Balan, L., Mozet, K., Girot, E., Medjahdi, G., Ben Said, M., Ghrabi, A., and Schneider, R.: Porous Mn-doped ZnO nanoparticles for enhanced solar and visible light photocatalysis. Mater. Des. 101, 309 (2016).CrossRefGoogle Scholar
Yayapao, O., Thongtem, T., Phuruangrat, A., and Thongtem, S.: Synthesis and characterization of highly efficient Gd doped ZnO photocatalyst irradiated with ultraviolet and visible radiations. Mater. Sci. Semicond. Process. 39, 786 (2015).CrossRefGoogle Scholar
Yang, G., Liu, Q., Fu, Y., Ma, H., Ma, C., Dong, X., Zhang, X., and Zhang, X.: Improved photocatalytic reactivity of ZnO photocatalysts decorated with Ni and their magnetic recoverability. J. Mater. Res. 30, 1902 (2015).CrossRefGoogle Scholar
Wada, N., Yokomizo, Y., Yogi, C., Katayama, M., Tanaka, A., Kojima, K., and Ozutsumi, K.: Effect of adding Au nanoparticles to TiO2 films on crystallization, phase transformation, and photocatalysis. J. Mater. Res. 33, 467 (2018).CrossRefGoogle Scholar
Li, C., Zhao, Z., Shindume, L.H., Huang, H., and Peng, Z.: Enhanced visible photocatalytic activity of nitrogen doped single-crystal-like TiO2 by synergistic treatment with urea and mixed nitrates. J. Mater. Res. 32, 737 (2017).CrossRefGoogle Scholar
Yan, Y., Chen, T., Zou, Y., and Wang, Y.: Bio-templated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis. J. Mater. Res. 31, 1383 (2016).CrossRefGoogle Scholar
Bora, D.: The photocathodic behavior of hierarchical ZnO/hematite hetero nanoarchitectures. J. Mater. Res. 31, 1554 (2016).CrossRefGoogle Scholar
Vogel, R., Hoyer, P., and Weller, H.: Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem. 98, 3183 (1994).CrossRefGoogle Scholar
Achouri, F., Corbel, S., Aboulaich, A., Balan, L., Ghrabi, A., BenSaid, M., and Schneider, R.: Aqueous synthesis and enhanced photocatalytic activity of ZnO/Fe2O3 heterostructures. J. Phys. Chem. Solids 75, 1081 (2014).CrossRefGoogle Scholar
Li, D., Jiang, X., Zhang, Y., Zhang, B., and Pan, C.: A novel route to ZnO/TiO2 heterojunction composite fibers. J. Mater. Res. 28, 507 (2013).CrossRefGoogle Scholar
Khanchandani, S., Kundu, S., Patra, A., and Ganguli, A.K.: Band gap tuning of ZnO/In2S3 core/shell nanorod arrays for enhanced visible-light-driven photocatalysis. J. Phys. Chem. C 117, 5558 (2013).CrossRefGoogle Scholar
Liu, X., Chu, H., Li, J., Niu, L., Li, C., Li, H., Pan, L., and Sun, C.Q.: Light converting phosphor-based photocatalytic composites. Catal. Sci. Technol. 5, 4727 (2015).CrossRefGoogle Scholar
Wang, J., Xie, Y.P., Zhang, Z.H., Li, J., Chen, X., Zhang, L., Xu, R., and Zhang, X.D.: Photocatalytic degradation of organic dyes with Er3+:YAlO3/ZnO composite under solar light. Sol. Energy Mater. Sol. Cells 93, 355 (2009).CrossRefGoogle Scholar
Chu, H., Liu, X.J., Liu, J., Lei, W., Li, J., Wu, T., Li, P., Li, H., and Pan, L.: Down-conversion phosphors as noble-metal-free co-catalyst in ZnO for efficient visible light photocatalysis. Appl. Surf. Sci. 391, 468 (2017).CrossRefGoogle Scholar
Liu, X., Pan, L., Li, J., Yu, K., Sun, Z., and Sun, C.Q.: Light down-converting characteristics of ZnO–Y2O2S:Eu3+ for visible light photocatalysis. J. Colloid Interface Sci. 404, 150 (2013).CrossRefGoogle ScholarPubMed
Liu, X., Wang, X., Li, H., Li, J., Pan, L., Zhang, J., Min, G., Sun, Z., and Sun, C.: Enhanced visible light photocatalytic activity of ZnO doped with down-conversion NaSrBO3:Tb3+ phosphors. Dalton Trans. 44, 97 (2015).CrossRefGoogle Scholar
Zammouri, L., Aboulaich, A., Capoen, B., Bouazaoui, M., Sarakha, M., Stitou, M., and Mahiou, R.: Enhancement under UV-visible and visible light of the ZnO photocatalytic activity for the antibiotic removal from aqueous media using Ce-doped Lu3Al5O12 nanoparticles. Mater. Res. Bull. 106, 162 (2018).CrossRefGoogle Scholar
Bohne, C., Faulhaber, K., Giese, B., Hafner, A., Hofmann, A., Ihmels, H., Kohler, A.K., Pera, S., Schneider, F., and Sheepwash, M.A-L.: Studies on the mechanism of the photo-induced DNA damage in the presence of acridizinium salts involvement of singlet oxygen and an unusual source for hydroxyl radicals. J. Am. Chem. Soc. 127, 76 (2005).CrossRefGoogle ScholarPubMed
Ipe, B.I., Lehning, M., and Niemeyer, C.M.: On the generation of free radical species from quantum dots. Small 1, 706 (2005).CrossRefGoogle ScholarPubMed
Brunauer, S., Emmett, P.H., and Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938).CrossRefGoogle Scholar
Barrett, E.P., Joyner, L.G., and Halenda, P.P.: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373 (1951).CrossRefGoogle Scholar
Cullity, B.D. and Stock, S.R.: Elements of X-Ray Diffraction, 3rd ed. (Prentice Hall, New York, 2001); pp. 149151.Google Scholar
Blasse, G. and Grabmaier, B.C.: Luminescent Materials (Springer-Verlag, Berlin, 1994); pp. 107118.CrossRefGoogle Scholar
Aboulaich, A., Tilmaciu, C-M., Merlin, C., Mercier, C., Guilloteau, H., Medjahdi, G., and Schneider, R.: Physicochemical properties and cellular toxicity of (poly)aminoalkoxysilanes-functionalized ZnO quantum dots. Nanotechnology 23, 335101 (2012).CrossRefGoogle ScholarPubMed
Aboulaich, A., Deschamps, J., Deloncle, R., Potdevin, A., Devouard, B., Chadeyron, G., and Mahiou, R.: Rapid synthesis of Ce3+-doped YAG nanoparticles by a solvothermal method using metal carbonates as precursors. New J. Chem. 36, 2493 (2012).CrossRefGoogle Scholar
Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603 (1985).CrossRefGoogle Scholar
Hitkari, G., Singh, S., and Pandey, G.: Synthesis, characterization and visible light degradation of organic dye by chemically synthesized ZnO/γ-Fe3O4 nanocomposites. Int. J. Adv. Res. Sci. Eng. Technol. 4, 3960 (2017).Google Scholar
Do, A-T.T., Giang, H.T., Do, T.T., Pham, N.Q., and Ho, G.T.: Effects of palladium on the optical and hydrogen sensing characteristics of Pd-doped ZnO nanoparticles. Beilstein J. Nanotechnol. 5, 1261 (2014).CrossRefGoogle ScholarPubMed
Fan, X.M., Lian, J.S., Zhao, L., and Liu, Y.H.: Single violet luminescence emitted from ZnO films obtained by oxidation of Zn film on quartz glass. Appl. Surf. Sci. 252, 420 (2005).CrossRefGoogle Scholar
Reddy, K., Reddy, A.J., Krishna, R.H., Nagabhushana, B.M., and Gopal, G.R.: Luminescence and spectroscopic investigations on Gd3+ doped ZnO nanophosphor. J. Asian Ceram. Soc. 5, 350 (2017).CrossRefGoogle Scholar
Velásquez, M., Santander, I.P., Contreras, D.R., Yáñez, J., Zaror, C., Salazar, R.A., Pérez-Moya, M., and Mansilla, H.D.: Oxidative degradation of sulfathiazole by Fenton and photo-Fenton reactions. J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 49, 661 (2014).CrossRefGoogle ScholarPubMed
He, D. and Ekere, N.N.: Effect of particle size ratio on the conducting percolation threshold of granular conductive-insulating composites. J. Phys. D: Appl. Phys. 37, 1848 (2004).CrossRefGoogle Scholar
Wang, C., Sawicki, M., Emani, S., Liu, C., and Shaw, L.L.: Na3MnCO3PO4—A high capacity, multi-electron transfer redox cathode material for sodium ion batteries. Electrochim. Acta 161, 322 (2015).CrossRefGoogle Scholar
Supplementary material: File

Zammouri et al. supplementary material

Zammouri et al. supplementary material 1

Download Zammouri et al. supplementary material(File)
File 1.2 MB