Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T09:24:17.815Z Has data issue: false hasContentIssue false

Synthesis of YBa2Cu3O7−x by chemical precursors

Published online by Cambridge University Press:  31 January 2011

D. E. Peterson
Affiliation:
Exploratory and Research Development Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
K. A. Kubat-Martin
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
T. G. George
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
T. G. Zocco
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. D. Thompson
Affiliation:
Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

An alternative synthetic route for obtaining bulk forms of the high temperature superconductor YBa2Cu3O7−x has been investigated. The approach is based on first preparing the phases Y2Cu2O5 and BaCuO2, followed by a single sintering of an appropriate mixture of these intermediate compounds to produce the superconducting phase. The resulting materials are largely single-phase as shown by x-ray diffraction, and have densities as high as 86% of the theoretical value, and superconducting onset temperatures of 93 K with magnetic shielding factors ranging from 0.85 to 1.02 (±0.05). Metallography and scanning electron microscopy data were also obtained on the best (high Tc, high shielding factors) of the samples. This synthesis approach is believed to be simpler, more reproducible, and has the potential of producing better materials than previously used bulk synthesis methods.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 See, for example: Roth, R. S., Davis, K. L., and Dennis, J. R., Adv. Ceram. Mater. 2 (3B), 303312 (1987); T. Aselage and K. Keefer, J. Mater. Res. 3, 1279–1291 (1988).CrossRefGoogle Scholar
2 See, for example: Nakahara, S., Fisanick, G. J., Yan, M. F., Dever, R. B.Van, Boone, T., and Moore, R., J. Cryst. Growth 85, 639651 (1987).CrossRefGoogle Scholar
3 See, for example: Verhoeven, J. D., Devolo, A. J., McCallum, R. W., Gibson, E. D., and Noack, M. A., Appl. Phys. Lett. 52, 745747 (1988).CrossRefGoogle Scholar
4 See, for example: Alford, N. Mc N., Clegg, W. J., Harmer, M. A., Birchall, J. D., Kendall, K., and Jones, D. H., Nature 332, 5859 (1988).CrossRefGoogle Scholar
5 See, for example: Watanabe, H., Kasai, Y., Mochiku, T., Sugshita, A., Iguchi, I., and Yamaka, E., Jpn. J. Appl. Phys., Pt. 2, 26 (5), L657–659 (1987).Google Scholar
6 Theoretical density of Y-123 calculated based on parameters reported in Miraglia, S., Beech, F., Santoro, A., Tran, Q. D., Sunshine, S. A., and Murphy, O. W., Mater. Res. Bull. XXII (12), 17331740 (1987).CrossRefGoogle Scholar
7Freund, H-R. and Müller-Buschbaum, H K., Z. Naturforsch. 32B, 11231124 (1977).CrossRefGoogle Scholar
8Kipka, R. and Müller-Buschbaum, H K., Z. Naturforsch. 32B, 121123 (1977).CrossRefGoogle Scholar
9Chunlin, J., Chanmeng, C., Kuihan, W., Sulan, L., Guiyi, Z., Guofan, Z., Cuenfu, Q., Weiming, B., Zhanguo, F., and Qian, X., Solid State Commun. 65, 859862 (1988).CrossRefGoogle Scholar
10Zhanguo, F. and Chunlin, J., J. of Less-Common Metals 152, L5–L10 (1989).Google Scholar
11Ruckenstein, E., Narain, S., and Wu, N-L., J. Mater. Res. 4, 267272 (1989).CrossRefGoogle Scholar