Skip to main content
    • Aa
    • Aa

Synthesis, structure and mechanical properties of ice-templated tungsten foams

  • André Röthlisberger (a1), Sandra Häberli (a2), Ralph Spolenak (a2) and David C. Dunand (a3)

Tungsten foams with directional, controlled porosity were created by directional freeze-casting of aqueous WO3 powder slurries, subsequent freeze-drying by ice sublimation, followed by reduction and sintering under flowing hydrogen gas to form metallic tungsten. Addition of 0.51 wt% NiO to the WO3 slurry improved the densification of tungsten cell walls significantly at sintering temperatures above 1250 °C, yielding densely sintered W–0.5 wt% Ni walls with a small fraction of closed porosity (<5%). Slurries with powder volume fractions of 15–35 vol% were solidified and upon reduction and sintering the open porosity ranges from 27–66% following a linear relation with slurry solid volume fraction. By varying casting temperature and powder volume fraction, the wall thickness of the tungsten foams was controlled in the range of 10–50 µm. Uniaxial compressive testing at 25 and 400 °C, below and above the brittle-to-ductile-transition temperature of W, yields compressive strength values of 70–96 MPa (25 °C) and 92–130 MPa (400 °C).

Corresponding author
a)Address all correspondence to this author. e-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M.V. Twigg and J.T. Richardson : Fundamentals and applications of structured ceramic foam catalysts. Ind. Eng. Chem. Res. 46(12), 4166 (2007).

Z-F. Huang , J. Song , L. Pan , X. Zhang , L. Wang , and J-J. Zou : Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 27(36), 5309 (2015).

A.G. Hamidi , H. Arabi , and S. Rastegari : Tungsten–copper composite production by activated sintering and infiltration. Int. J. Refract. Hard Met. 29(4), 538 (2011).

A.G. Hamidi , H. Arabi , and S. Rastegari : A feasibility study of W-Cu composites production by high pressure compression of tungsten powder. Int. J. Refract. Hard Met. 29(1), 123 (2011).

J. Marafona and C. Wykes : A new method of optimising material removal rate using EDM with copper–tungsten electrodes. Int. J. Mach. Tool Manuf. 40(2), 153 (2000).

J. Banhart : Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46(6), 559 (2001).

L.P. Lefebvre , J. Banhart , and D.C. Dunand : Porous metals and metallic foams: Current status and recent developments. Adv. Eng. Mater. 10(9), 775 (2008).

C. Selcuk and J.V. Wood : Reactive sintering of porous tungsten: A cost effective sustainable technique for the manufacturing of high current density cathodes to be used in flashlamps. J. Mater. Process. Technol. 170(1–2), 471 (2005).

F. Soldera , A. Lasagni , F. Mucklich , T. Kaiser , and K. Hrastnik : Determination of the cathode erosion and temperature for the phases of high voltage discharges using FEM simulations. Comput. Mater. Sci. 32(1), 123 (2005).

S. Deville : Freeze-casting of porous ceramics: A review of current achievements and issues. Adv. Eng. Mater. 10(3), 155 (2008).

Y. Chino and D.C. Dunand : Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Mater. 56(1), 105 (2008).

A.I.C. Ramos and D.C. Dunand : Preparation and characterization of directionally freeze-cast copper foams. Metals 2(3), 265 (2012).

J.C. Li and D.C. Dunand : Mechanical properties of directionally freeze-cast titanium foams. Acta Mater. 59(1), 146 (2011).

M. Fukushima and Y. Yoshizawa : Fabrication of highly porous nickel with oriented micrometer-sized cylindrical pores by gelation freezing method. Mater. Lett. 153, 99 (2015).

D. Driscoll , A.J. Weisenstein , and S.W. Sofie : Electrical and flexural anisotropy in freeze tape cast stainless steel porous substrates. Mat. Lett. 65(23–24), 3433 (2011).

C. Pekor and I. Nettleship : The effect of the molecular weight of polyethylene glycol on the microstructure of freeze-cast alumina. Ceram. Int. 40(7), 9171 (2014).

C.M. Pekor , P. Kisa , and I. Nettleship : Effect of polyethylene glycol on the microstructure of freeze-cast alumina. J. Am. Ceram. Soc. 91(10), 3185 (2008).

S-T. Oh , Y.D. Kim , and M-J. Suk : Freeze drying for porous Mo with different sublimable vehicle compositions in the camphor-naphthalene system. Mater. Lett. 139, 268 (2015).

Y-S. Lee and S-T. Oh : Fabrication and properties of porous tungsten by freeze-drying process. Korean J. Mater. Res. 21(9), 520 (2011).

I.J. Toth and N.A. Lockington : The kinetics of metallic activation sintering of tungsten. J. Less-Common Met. 12(5), 353 (1967).

E. Laarz and L. Bergstrom : Dispersing WC–Co powders in aqueous media with polyethylenimine. Int. J. Refract. Hard Met. 18(6), 281 (2000).

E. Lassner and W-D. Schubert : The element tungsten. In Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, E. Lassner and W-D. Schubert , eds. (Springer: New York, 1999); pp. 160.

A. Giannattasio , Z. Yao , E. Tarleton , and S.G. Roberts : Brittle-ductile transitions in polycrystalline tungsten. Philos. Mag. 90(30), 3947 (2010).

A. Giannattasio and S.G. Roberts : Strain-rate dependence of the brittle-to-ductile transition temperature in tungsten. Philos. Mag. 87(16–17), 2589 (2007).

D.C. Dunand : Processing of titanium foams. Adv. Eng. Mater. 6(6), 369 (2004).

S. Deville , E. Saiz , R.K. Nalla , and A.P. Tomsia : Freezing as a path to build complex composites. Science 311(5760), 515 (2006).

N.O. Shanti , K. Araki , and J.W. Halloran : Particle redistribution during dendritic solidification of particle suspensions. J. Am. Ceram. Soc. 89(8), 2444 (2006).

G. Liu , D. Zhang , C. Meggs , and T.W. Button : Porous Al2O3-ZrO2 composites fabricated by an ice template method. Scr. Mater. 62(7), 466 (2010).

H.F. Zhang , I. Hussain , M. Brust , M.F. Butler , S.P. Rannard , and A.I. Cooper : Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat. Mater. 4(10), 787 (2005).

V.K. Gupta , D.H. Yoon , H.M. Meyer , and J. Luo : Thin intergranular films and solid-state activated sintering in nickel-doped tungsten. Acta Mater. 55(9), 3131 (2007).

H. Mehrer , N. Stolica , and N.A. Stolwijk : Chromium group metals. In Landolt-Börnstein—Group III Condensed Matter (Diffusion in Solid Metals and Alloys), Vol. 26, H. Mehrer ed.; Springer-Verlag Berlin Heidelberg: Berlin, 1990.

A.D. LeClaire and G. Neumann : Figs. 27–41. In Landolt-Börnstein—Group III Condensed Matter (Diffusion in Solid Metals and Alloys), Vol. 26, H. Mehrer ed.; Springer-Verlag Berlin Heidelberg: Berlin, 1990.

G.E. Murch and C.M. Bruff : Nb-V—U-Zr. In Landolt-Börnstein—Group III Condensed Matter (Diffusion in solid metals and Alloys), Vol. 26, H. Mehrer ed.; Springer-Verlag Berlin Heidelberg: Berlin, 1990.

K. Yue , W.Y. Luo , X.Q. Dong , C.S. Wang , G.H. Wu , M.W. Jiang , and Y.Z. Zha : A new lead-free radiation shielding material for radiotherapy. Radiat. Prot. Dosim. 133(4), 256 (2009).

E. Lassner and W-D. Schubert : Tungsten in catalysis. In Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and chemical Compounds, E. Lassner and W-D. Schubert , eds. (Springer: New York, 1999); p. 365.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 3
Total number of PDF views: 65 *
Loading metrics...

Abstract views

Total abstract views: 318 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 26th July 2017. This data will be updated every 24 hours.