Skip to main content
×
×
Home

Synthesis, structure and mechanical properties of ice-templated tungsten foams

  • André Röthlisberger (a1), Sandra Häberli (a2), Ralph Spolenak (a2) and David C. Dunand (a3)
Abstract
Abstract

Tungsten foams with directional, controlled porosity were created by directional freeze-casting of aqueous WO3 powder slurries, subsequent freeze-drying by ice sublimation, followed by reduction and sintering under flowing hydrogen gas to form metallic tungsten. Addition of 0.51 wt% NiO to the WO3 slurry improved the densification of tungsten cell walls significantly at sintering temperatures above 1250 °C, yielding densely sintered W–0.5 wt% Ni walls with a small fraction of closed porosity (<5%). Slurries with powder volume fractions of 15–35 vol% were solidified and upon reduction and sintering the open porosity ranges from 27–66% following a linear relation with slurry solid volume fraction. By varying casting temperature and powder volume fraction, the wall thickness of the tungsten foams was controlled in the range of 10–50 µm. Uniaxial compressive testing at 25 and 400 °C, below and above the brittle-to-ductile-transition temperature of W, yields compressive strength values of 70–96 MPa (25 °C) and 92–130 MPa (400 °C).

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: dunand@northwestern.edu
References
Hide All
1.Twigg M.V. and Richardson J.T.: Fundamentals and applications of structured ceramic foam catalysts. Ind. Eng. Chem. Res. 46(12), 4166 (2007).
2.Huang Z-F., Song J., Pan L., Zhang X., Wang L., and Zou J-J.: Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 27(36), 5309 (2015).
3.Hamidi A.G., Arabi H., and Rastegari S.: Tungsten–copper composite production by activated sintering and infiltration. Int. J. Refract. Hard Met. 29(4), 538 (2011).
4.Hamidi A.G., Arabi H., and Rastegari S.: A feasibility study of W-Cu composites production by high pressure compression of tungsten powder. Int. J. Refract. Hard Met. 29(1), 123 (2011).
5.Behrens V. and Weise W.: Contact materials. In Landolt-Börnstein—Group VIII Advanced Materials and Technologies (Powder Metallurgy Data), Vol. 2A1, Beiss P., Ruthardt R., and Warlimont H. eds.; Springer-Verlag Berlin Heidelberg: Berlin, 2003.
6.Lassner E. and Schubert W-D.: Tungsten alloys. In Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Lassner E. and Schubert W-D., eds. (Springer: New York, 1999); pp. 254282.
7.Marafona J. and Wykes C.: A new method of optimising material removal rate using EDM with copper–tungsten electrodes. Int. J. Mach. Tool Manuf. 40(2), 153 (2000).
8.Banhart J.: Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46(6), 559 (2001).
9.Lefebvre L.P., Banhart J., and Dunand D.C.: Porous metals and metallic foams: Current status and recent developments. Adv. Eng. Mater. 10(9), 775 (2008).
10.Selcuk C. and Wood J.V.: Reactive sintering of porous tungsten: A cost effective sustainable technique for the manufacturing of high current density cathodes to be used in flashlamps. J. Mater. Process. Technol. 170(1–2), 471 (2005).
11.Lassner E. and Schubert W-D.: Industrial production. In Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Springer: New York, 1999; pp. 246247.
12.Soldera F., Lasagni A., Mucklich F., Kaiser T., and Hrastnik K.: Determination of the cathode erosion and temperature for the phases of high voltage discharges using FEM simulations. Comput. Mater. Sci. 32(1), 123 (2005).
13.Deville S.: Freeze-casting of porous ceramics: A review of current achievements and issues. Adv. Eng. Mater. 10(3), 155 (2008).
14.Chino Y. and Dunand D.C.: Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Mater. 56(1), 105 (2008).
15.Ramos A.I.C. and Dunand D.C.: Preparation and characterization of directionally freeze-cast copper foams. Metals 2(3), 265 (2012).
16.Li J.C. and Dunand D.C.: Mechanical properties of directionally freeze-cast titanium foams. Acta Mater. 59(1), 146 (2011).
17.Chino Y. and Dunand D.C.: Titanium foams with aligned, elongated pores produced by freeze casting. In MetFoam 2007—Proceedings of the 5th International Conference on Porous Metals and Metallic Foam (DEStech Publications Inc., Lancaster, 2008); p. 263.
18.Fukushima M. and Yoshizawa Y.: Fabrication of highly porous nickel with oriented micrometer-sized cylindrical pores by gelation freezing method. Mater. Lett. 153, 99 (2015).
19.Driscoll D., Weisenstein A.J., and Sofie S.W.: Electrical and flexural anisotropy in freeze tape cast stainless steel porous substrates. Mat. Lett. 65(23–24), 3433 (2011).
20.Pekor C. and Nettleship I.: The effect of the molecular weight of polyethylene glycol on the microstructure of freeze-cast alumina. Ceram. Int. 40(7), 9171 (2014).
21.Pekor C.M., Kisa P., and Nettleship I.: Effect of polyethylene glycol on the microstructure of freeze-cast alumina. J. Am. Ceram. Soc. 91(10), 3185 (2008).
22.Oh S-T., Kim Y.D., and Suk M-J.: Freeze drying for porous Mo with different sublimable vehicle compositions in the camphor-naphthalene system. Mater. Lett. 139, 268 (2015).
23.Lee Y-S. and Oh S-T.: Fabrication and properties of porous tungsten by freeze-drying process. Korean J. Mater. Res. 21(9), 520 (2011).
24.Toth I.J. and Lockington N.A.: The kinetics of metallic activation sintering of tungsten. J. Less-Common Met. 12(5), 353 (1967).
25.Corti W.: Sintering aids in powder metallurgy. Platinum Met. Rev. 30(4), 184 (1986).
26.Laarz E. and Bergstrom L.: Dispersing WC–Co powders in aqueous media with polyethylenimine. Int. J. Refract. Hard Met. 18(6), 281 (2000).
27.Subcommittee C08.03: ASTM C20-00 Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water (ASTM International, West Conshohocken, 2015).
28.Oliver W.C. and Pharr G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).
29.Lassner E. and Schubert W-D.: The element tungsten. In Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Lassner E. and Schubert W-D., eds. (Springer: New York, 1999); pp. 160.
30.Giannattasio A., Yao Z., Tarleton E., and Roberts S.G.: Brittle-ductile transitions in polycrystalline tungsten. Philos. Mag. 90(30), 3947 (2010).
31.Giannattasio A. and Roberts S.G.: Strain-rate dependence of the brittle-to-ductile transition temperature in tungsten. Philos. Mag. 87(16–17), 2589 (2007).
32.Lassner E. and Schubert W-D.: Industrial production. In Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Lassner E. and Schubert W-D., eds. (Springer: New York, 1999); p. 235.
33.Dunand D.C.: Processing of titanium foams. Adv. Eng. Mater. 6(6), 369 (2004).
34.Lemmon E.W. and Harvey A.H.: Thermophysical properties of water and steam. In CRC Handbook of Chemistry and Physics, Haynes W.M. ed.; Taylor & Francis: New York, 2015; pp. 6–1.
35.King E.G., Christensen A.U., and Weller W.W.: Thermodynamics of Some Oxides of Molybdenum and Tungsten (U.S. Department of the Interior, Bureau of Mines, Washington, D.C., 1960).
36.Harvey A.H.: Properties of ice and supercooled water. In CRC Handbook of Chemistry and Physics, Haynes W.M. ed.; Taylor & Francis: New York, 2015); pp. 612.
37.Physical constants of inorganic compounds. In CRC Handbook of Chemistry and Physics, Haynes W.M. ed.; Taylor & Francis: New York, 2015; pp. 497.
38.Deville S., Saiz E., Nalla R.K., and Tomsia A.P.: Freezing as a path to build complex composites. Science 311(5760), 515 (2006).
39.Shanti N.O., Araki K., and Halloran J.W.: Particle redistribution during dendritic solidification of particle suspensions. J. Am. Ceram. Soc. 89(8), 2444 (2006).
40.Liu G., Zhang D., Meggs C., and Button T.W.: Porous Al2O3-ZrO2 composites fabricated by an ice template method. Scr. Mater. 62(7), 466 (2010).
41.Zhang H.F., Hussain I., Brust M., Butler M.F., Rannard S.P., and Cooper A.I.: Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat. Mater. 4(10), 787 (2005).
42.Predel B.: Binary phase diagram Ni–W. In Landolt-Börnstein—Group IV Physical Chemistry 5I (Ni-Np—Pt-Zr), Madelung O. ed.; Springer-Verlag Berlin Heidelberg: Berlin, 1998.
43.Brophy J.H., Hayden H.W., and Wulff J.: Final stages of densification in nickel-tungsten compacts. Trans. Met Soc. AIME 224(4), 797 (1962).
44.Gupta V.K., Yoon D.H., Meyer H.M., and Luo J.: Thin intergranular films and solid-state activated sintering in nickel-doped tungsten. Acta Mater. 55(9), 3131 (2007).
45.Mehrer H., Stolica N., and Stolwijk N.A.: Chromium group metals. In Landolt-Börnstein—Group III Condensed Matter (Diffusion in Solid Metals and Alloys), Vol. 26, Mehrer H. ed.; Springer-Verlag Berlin Heidelberg: Berlin, 1990.
46.LeClaire A.D. and Neumann G.: Figs. 27–41. In Landolt-Börnstein—Group III Condensed Matter (Diffusion in Solid Metals and Alloys), Vol. 26, Mehrer H. ed.; Springer-Verlag Berlin Heidelberg: Berlin, 1990.
47.Murch G.E. and Bruff C.M.: Nb-V—U-Zr. In Landolt-Börnstein—Group III Condensed Matter (Diffusion in solid metals and Alloys), Vol. 26, Mehrer H. ed.; Springer-Verlag Berlin Heidelberg: Berlin, 1990.
48.Lichtner A., Roussel D., Jauffrès D., Martin C.L. and Bordia R.K.: Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. J Am Ceram Soc., doi: 10.1111/jace.1400 (2015).
49.Peuster M., Kaese V., Wuensch G., von Schnakenburg C., Niemeyer M., Fink C., Haferkamp H., and Hausdorf G.: Composition and in vitro biocompatibility of corroding tungsten coils. J. Biomed. Mater. Res., Part B 65(1), 211 (2003).
50.Yue K., Luo W.Y., Dong X.Q., Wang C.S., Wu G.H., Jiang M.W., and Zha Y.Z.: A new lead-free radiation shielding material for radiotherapy. Radiat. Prot. Dosim. 133(4), 256 (2009).
51.Lassner E. and Schubert W-D.: Tungsten in catalysis. In Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and chemical Compounds, Lassner E. and Schubert W-D., eds. (Springer: New York, 1999); p. 365.
52.JCPDS: PDF 00-004-0806, International Center for Diffraction Data ICDD, 2004.
53.JCPDS: PDF 01-083-0950, International Center for Diffraction Data ICDD, 2004.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 5
Total number of PDF views: 89 *
Loading metrics...

Abstract views

Total abstract views: 439 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 16th January 2018. This data will be updated every 24 hours.