Skip to main content
×
×
Home

Tailoring plasticity of metallic glasses via interfaces in Cu/amorphous CuNb laminates

  • Zhe Fan (a1), Qiang Li (a2), Jin Li (a3), Sichuang Xue (a1), Haiyan Wang (a4) and Xinghang Zhang (a2)...
Abstract
Abstract

Metallic glasses (MGs) are known to have high strength, but poor ductility. Prior studies have shown that plasticity in MG can be enhanced by significantly reducing their dimension to nanoscale. Here we show that, via the introduction of certain types of crystalline/amorphous interfaces, plasticity of MG can be prominently enhanced as manifested by the formation of ductile “dimples” in a 2 μm thick amorphous CuNb film. By tailoring the volume fraction and architecture of crystalline/amorphous multilayers, tensile fracture surface of MG can evolve from brittle featureless morphology to containing ductile dimples. In situ micropillar compression studies performed inside a scanning electron microscope show that shear instability in amorphous layers can be inhibited by interfaces. The mechanisms for improving plasticity and fracture resistance of MG via interface and size effect are discussed.

Copyright
Corresponding author
a) Address all correspondence to these authors. e-mail: vanstart2012@gmail.com
b) e-mail: xzhang98@purdue.edu
Footnotes
Hide All

Contributing Editor: Jürgen Eckert

Footnotes
References
Hide All
1. Ashby M.F. and Greer A.L.: Metallic glasses as structural materials. Scr. Mater. 54, 321 (2006).
2. Tian L., Cheng Y-Q., Shan Z-W., Li J., Wang C-C., Han X-D., Sun J., and Ma E.: Approaching the ideal elastic limit of metallic glasses. Nat. Commun. 3, 609 (2012).
3. Greer A.L. and Ma E.: Bulk metallic glasses: At the ccutting edge of metals research. MRS Bull. 32, 611 (2007).
4. Zhang Z.F., Eckert J., and Schultz L.: Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 (2003).
5. Schuh C.A., Hufnagel T.C., and Ramamurty U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).
6. Greer A.L., Cheng Y.Q., and Ma E.: Shear bands in metallic glasses. Mater. Sci. Eng., R 74, 71 (2013).
7. Choi-Yim H. and Johnson W.L.: Bulk metallic glass matrix composites. Appl. Phys. Lett. 71, 3808 (1997).
8. Lee M.L., Li Y., and Schuh C.A.: Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater. 52, 4121 (2004).
9. Eckert J., Das J., Pauly S., and Duhamel C.: Mechanical properties of bulk metallic glasses and composites. J. Mater. Res. 22, 285 (2007).
10. He G., Löser W., Eckert J., and Schultz L.: Enhanced plasticity in a Ti-based bulk metallic glass-forming alloy by in situ formation of a composite microstructure. J. Mater. Res. 17, 3015 (2002).
11. Chen G., Cheng J., and Liu C.T.: Large-sized Zr-based bulk-metallic-glass composite with enhanced tensile properties. Intermetallics 28, 25 (2012).
12. Hofmann D.C., Suh J-Y., Wiest A., Duan G., Lind M-L., Demetriou M.D., and Johnson W.L.: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008).
13. Kim J.Y., Jang D., and Greer J.R.: Nanolaminates utilizing size-dependent homogeneous plasticity of metallic glasses. Adv. Funct. Mater. 21, 4550 (2011).
14. Guo W., Jägle E., Yao J., Maier V., Korte-Kerzel S., Schneider J.M., and Raabe D.: Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates. Acta Mater. 80, 94 (2014).
15. Donohue A., Spaepen F., Hoagland R., and Misra A.: Suppression of the shear band instability during plastic flow of nanometer-scale confined metallic glasses. Appl. Phys. Lett. 91, 241905 (2007).
16. Huang H., Pei H., Chang Y., Lee C., and Huang J.: Tensile behaviors of amorphous-ZrCu/nanocrystalline-Cu multilayered thin film on polyimide substrate. Thin Solid Films 529, 177 (2013).
17. Nieh T. and Wadsworth J.: Bypassing shear band nucleation and ductilization of an amorphous–crystalline nanolaminate in tension. Intermetallics 16, 1156 (2008).
18. Wang J., Zhou Q., Shao S., and Misra A.: Strength and plasticity of nanolaminated materials. Mater. Res. Lett. 5, 1 (2017).
19. Knorr I., Cordero N., Lilleodden E.T., and Volkert C.A.: Mechanical behavior of nanoscale Cu/PdSi multilayers. Acta Mater. 61, 4984 (2013).
20. Wang Y., Li J., Hamza A.V., and Barbee T.W.: Ductile crystalline–amorphous nanolaminates. Proc. Natl. Acad. Sci. U. S. A. 104, 11155 (2007).
21. Liu M., Huang J., Chou H., Lai Y., Lee C., and Nieh T.: A nanoscaled underlayer confinement approach for achieving extraordinarily plastic amorphous thin film. Scr. Mater. 61, 840 (2009).
22. Yoo B-G., Kim J-Y., Kim Y-J., Choi I-C., Shim S., Tsui T.Y., Bei H., Ramamurty U., and Jang J-I.: Increased time-dependent room temperature plasticity in metallic glass nanopillars and its size-dependency. Int. J. Plast. 37, 108 (2012).
23. Jang D., Gross C.T., and Greer J.R.: Effects of size on the strength and deformation mechanism in Zr-based metallic glasses. Int. J. Plast. 27, 858 (2011).
24. Volkert C., Donohue A., and Spaepen F.: Effect of sample size on deformation in amorphous metals. J. Appl. Phys. 103, 83539 (2008).
25. Zhang J., Liu G., Lei S., Niu J., and Sun J.: Transition from homogeneous-like to shear-band deformation in nanolayered crystalline Cu/amorphous Cu–Zr micropillars: Intrinsic vs. extrinsic size effect. Acta Mater. 60, 7183 (2012).
26. Liu M.C., Lee C.J., Lai Y.H., and Huang J.C.: Microscale deformation behavior of amorphous/nanocrystalline multilayered pillars. Thin Solid Films 518, 7295 (2010).
27. Bharathula A., Lee S-W., Wright W.J., and Flores K.M.: Compression testing of metallic glass at small length scales: Effects on deformation mode and stability. Acta Mater. 58, 5789 (2010).
28. Sun B.A. and Wang W.H.: The fracture of bulk metallic glasses. Prog. Mater. Sci. 74, 211 (2015).
29. Leamy H., Wang T., and Chen H.: Plastic flow and fracture of metallic glass. Metall. Trans. 3, 699 (1972).
30. Narasimhan R., Tandaiya P., Singh I., Narayan R., and Ramamurty U.: Fracture in metallic glasses: Mechanics and mechanisms. Int. J. Fract. 191, 53 (2015).
31. Matthews D., Ocelik V., Bronsveld P., and De Hosson J.T.M.: An electron microscopy appraisal of tensile fracture in metallic glasses. Acta Mater. 56, 1762 (2008).
32. Gilbert C., Schroeder V., and Ritchie R.: Mechanisms for fracture and fatigue-crack propagation in a bulk metallic glass. Metall. Mater. Trans. A 30, 1739 (1999).
33. Spaepen F.: On the fracture morphology of metallic glasses. Acta Metall. 23, 615 (1975).
34. Gu X.J., Poon S.J., Shiflet G.J., and Lewandowski J.J.: Ductile-to-brittle transition in a Ti-based bulk metallic glass. Scr. Mater. 60, 1027 (2009).
35. Liu Y.H., Wang G., Wang R.J., Pan M.X., and Wang W.H.: Super plastic bulk metallic glasses at room temperature. Science 315, 1385 (2007).
36. Bei H., Xie S., and George E.P.: Softening caused by profuse shear banding in a bulk metallic glass. Phys. Rev. Lett. 96, 105503 (2006).
37. Xu J., Ramamurty U., and Ma E.: The fracture toughness of bulk metallic glasses. JOM 62, 10 (2010).
38. Xi X.K., Zhao D.Q., Pan M.X., Wang W.H., Wu Y., and Lewandowski J.J.: Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 94, 125510 (2005).
39. Lewandowski J., Wang W., and Greer A.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).
40. Macionczyk F. and Brückner W.: Tensile testing of AlCu thin films on polyimide foils. J. Appl. Phys. 86, 4922 (1999).
41. Denis Y. and Spaepen F.: The yield strength of thin copper films on Kapton. J. Appl. Phys. 95, 2991 (2004).
42. Jang D. and Greer J.R.: Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat. Mater. 9, 215 (2010).
43. Tan H.F., Zhang B., Yang Y.K., Zhu X.F., and Zhang G.P.: Fracture behavior of sandwich-structured metal/amorphous alloy/metal composites. Mater. Des. 90, 60 (2016).
44. Pampillo C.A.: Flow and fracture in amorphous alloys. J. Mater. Sci. 10, 1194 (1975).
45. Liu H.S., Zhang B., and Zhang G.P.: Enhanced toughness and fatigue strength of cold roll bonded Cu/Cu laminated composites with mechanical contrast. Scr. Mater. 65, 891 (2011).
46. Wang G., Zhao D., Bai H., Pan M., Xia A., Han B., Xi X., Wu Y., and Wang W.: Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses. Phys. Rev. Lett. 98, 235501 (2007).
47. Fan Z., Xue S., Wang J., Yu K.Y., Wang H., and Zhang X.: Unusual size dependent strengthening mechanisms of Cu/amorphous CuNb multilayers. Acta Mater. 120, 327 (2016).
48. Fan Z., Liu Y., Xue S., Rahimi R.M., Bahr D.F., Wang H., and Zhang X.: Layer thickness dependent strain rate sensitivity of Cu/amorphous CuNb multilayer. Appl. Phys. Lett. 110, 161905 (2017).
49. Schuh C., Nieh T., and Kawamura Y.: Rate dependence of serrated flow during nanoindentation of a bulk metallic glass. J. Mater. Res. 17, 1651 (2002).
50. Jiang W. and Atzmon M.: Rate dependence of serrated flow in a metallic glass. J. Mater. Res. 18, 755 (2003).
51. Nix W.D. and Gao H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).
52. Huang L., Zhou J., Zhang S., Wang Y., and Liu Y.: Effects of interface and microstructure on the mechanical behaviors of crystalline Cu-amorphous Cu/Zr nanolaminates. Mater. Des. 36, 6 (2012).
53. Brandl C., Germann T., and Misra A.: Structure and shear deformation of metallic crystalline–amorphous interfaces. Acta Mater. 61, 3600 (2013).
54. Wang J. and Misra A.: An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr. Opin. Solid State Mater. Sci. 15, 20 (2011).
55. Tian L., Shan Z-W., and Ma E.: Ductile necking behavior of nanoscale metallic glasses under uniaxial tension at room temperature. Acta Mater. 61, 4823 (2013).
56. Guo H., Yan P., Wang Y., Tan J., Zhang Z., Sui M., and Ma E.: Tensile ductility and necking of metallic glass. Nat. Mater. 6, 735 (2007).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
VIDEO
Supplementary materials

Fan supplementary material
Video 1

 Video (46.9 MB)
46.9 MB
VIDEO
Supplementary materials

Fan supplementary material
Video 2

 Video (81.0 MB)
81.0 MB

Metrics

Full text views

Total number of HTML views: 6
Total number of PDF views: 104 *
Loading metrics...

Abstract views

Total abstract views: 432 *
Loading metrics...

* Views captured on Cambridge Core between 13th July 2017 - 21st January 2018. This data will be updated every 24 hours.