Skip to main content
×
Home
    • Aa
    • Aa

Tailoring plasticity of metallic glasses via interfaces in Cu/amorphous CuNb laminates

  • Zhe Fan (a1), Qiang Li (a2), Jin Li (a3), Sichuang Xue (a1), Haiyan Wang (a4) and Xinghang Zhang (a2)...
Abstract
Abstract

Metallic glasses (MGs) are known to have high strength, but poor ductility. Prior studies have shown that plasticity in MG can be enhanced by significantly reducing their dimension to nanoscale. Here we show that, via the introduction of certain types of crystalline/amorphous interfaces, plasticity of MG can be prominently enhanced as manifested by the formation of ductile “dimples” in a 2 μm thick amorphous CuNb film. By tailoring the volume fraction and architecture of crystalline/amorphous multilayers, tensile fracture surface of MG can evolve from brittle featureless morphology to containing ductile dimples. In situ micropillar compression studies performed inside a scanning electron microscope show that shear instability in amorphous layers can be inhibited by interfaces. The mechanisms for improving plasticity and fracture resistance of MG via interface and size effect are discussed.

Copyright
Corresponding author
a) Address all correspondence to these authors. e-mail: vanstart2012@gmail.com
b) e-mail: xzhang98@purdue.edu
Footnotes
Hide All

Contributing Editor: Jürgen Eckert

Footnotes
References
Hide All
1. AshbyM.F. and GreerA.L.: Metallic glasses as structural materials. Scr. Mater. 54, 321 (2006).
2. TianL., ChengY-Q., ShanZ-W., LiJ., WangC-C., HanX-D., SunJ., and MaE.: Approaching the ideal elastic limit of metallic glasses. Nat. Commun. 3, 609 (2012).
3. GreerA.L. and MaE.: Bulk metallic glasses: At the ccutting edge of metals research. MRS Bull. 32, 611 (2007).
4. ZhangZ.F., EckertJ., and SchultzL.: Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 (2003).
5. SchuhC.A., HufnagelT.C., and RamamurtyU.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).
6. GreerA.L., ChengY.Q., and MaE.: Shear bands in metallic glasses. Mater. Sci. Eng., R 74, 71 (2013).
7. Choi-YimH. and JohnsonW.L.: Bulk metallic glass matrix composites. Appl. Phys. Lett. 71, 3808 (1997).
8. LeeM.L., LiY., and SchuhC.A.: Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater. 52, 4121 (2004).
9. EckertJ., DasJ., PaulyS., and DuhamelC.: Mechanical properties of bulk metallic glasses and composites. J. Mater. Res. 22, 285 (2007).
10. HeG., LöserW., EckertJ., and SchultzL.: Enhanced plasticity in a Ti-based bulk metallic glass-forming alloy by in situ formation of a composite microstructure. J. Mater. Res. 17, 3015 (2002).
11. ChenG., ChengJ., and LiuC.T.: Large-sized Zr-based bulk-metallic-glass composite with enhanced tensile properties. Intermetallics 28, 25 (2012).
12. HofmannD.C., SuhJ-Y., WiestA., DuanG., LindM-L., DemetriouM.D., and JohnsonW.L.: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008).
13. KimJ.Y., JangD., and GreerJ.R.: Nanolaminates utilizing size-dependent homogeneous plasticity of metallic glasses. Adv. Funct. Mater. 21, 4550 (2011).
14. GuoW., JägleE., YaoJ., MaierV., Korte-KerzelS., SchneiderJ.M., and RaabeD.: Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates. Acta Mater. 80, 94 (2014).
15. DonohueA., SpaepenF., HoaglandR., and MisraA.: Suppression of the shear band instability during plastic flow of nanometer-scale confined metallic glasses. Appl. Phys. Lett. 91, 241905 (2007).
16. HuangH., PeiH., ChangY., LeeC., and HuangJ.: Tensile behaviors of amorphous-ZrCu/nanocrystalline-Cu multilayered thin film on polyimide substrate. Thin Solid Films 529, 177 (2013).
17. NiehT. and WadsworthJ.: Bypassing shear band nucleation and ductilization of an amorphous–crystalline nanolaminate in tension. Intermetallics 16, 1156 (2008).
18. WangJ., ZhouQ., ShaoS., and MisraA.: Strength and plasticity of nanolaminated materials. Mater. Res. Lett. 5, 1 (2017).
19. KnorrI., CorderoN., LilleoddenE.T., and VolkertC.A.: Mechanical behavior of nanoscale Cu/PdSi multilayers. Acta Mater. 61, 4984 (2013).
20. WangY., LiJ., HamzaA.V., and BarbeeT.W.: Ductile crystalline–amorphous nanolaminates. Proc. Natl. Acad. Sci. U. S. A. 104, 11155 (2007).
21. LiuM., HuangJ., ChouH., LaiY., LeeC., and NiehT.: A nanoscaled underlayer confinement approach for achieving extraordinarily plastic amorphous thin film. Scr. Mater. 61, 840 (2009).
22. YooB-G., KimJ-Y., KimY-J., ChoiI-C., ShimS., TsuiT.Y., BeiH., RamamurtyU., and JangJ-I.: Increased time-dependent room temperature plasticity in metallic glass nanopillars and its size-dependency. Int. J. Plast. 37, 108 (2012).
23. JangD., GrossC.T., and GreerJ.R.: Effects of size on the strength and deformation mechanism in Zr-based metallic glasses. Int. J. Plast. 27, 858 (2011).
24. VolkertC., DonohueA., and SpaepenF.: Effect of sample size on deformation in amorphous metals. J. Appl. Phys. 103, 83539 (2008).
25. ZhangJ., LiuG., LeiS., NiuJ., and SunJ.: Transition from homogeneous-like to shear-band deformation in nanolayered crystalline Cu/amorphous Cu–Zr micropillars: Intrinsic vs. extrinsic size effect. Acta Mater. 60, 7183 (2012).
26. LiuM.C., LeeC.J., LaiY.H., and HuangJ.C.: Microscale deformation behavior of amorphous/nanocrystalline multilayered pillars. Thin Solid Films 518, 7295 (2010).
27. BharathulaA., LeeS-W., WrightW.J., and FloresK.M.: Compression testing of metallic glass at small length scales: Effects on deformation mode and stability. Acta Mater. 58, 5789 (2010).
28. SunB.A. and WangW.H.: The fracture of bulk metallic glasses. Prog. Mater. Sci. 74, 211 (2015).
29. LeamyH., WangT., and ChenH.: Plastic flow and fracture of metallic glass. Metall. Trans. 3, 699 (1972).
30. NarasimhanR., TandaiyaP., SinghI., NarayanR., and RamamurtyU.: Fracture in metallic glasses: Mechanics and mechanisms. Int. J. Fract. 191, 53 (2015).
31. MatthewsD., OcelikV., BronsveldP., and De HossonJ.T.M.: An electron microscopy appraisal of tensile fracture in metallic glasses. Acta Mater. 56, 1762 (2008).
32. GilbertC., SchroederV., and RitchieR.: Mechanisms for fracture and fatigue-crack propagation in a bulk metallic glass. Metall. Mater. Trans. A 30, 1739 (1999).
33. SpaepenF.: On the fracture morphology of metallic glasses. Acta Metall. 23, 615 (1975).
34. GuX.J., PoonS.J., ShifletG.J., and LewandowskiJ.J.: Ductile-to-brittle transition in a Ti-based bulk metallic glass. Scr. Mater. 60, 1027 (2009).
35. LiuY.H., WangG., WangR.J., PanM.X., and WangW.H.: Super plastic bulk metallic glasses at room temperature. Science 315, 1385 (2007).
36. BeiH., XieS., and GeorgeE.P.: Softening caused by profuse shear banding in a bulk metallic glass. Phys. Rev. Lett. 96, 105503 (2006).
37. XuJ., RamamurtyU., and MaE.: The fracture toughness of bulk metallic glasses. JOM 62, 10 (2010).
38. XiX.K., ZhaoD.Q., PanM.X., WangW.H., WuY., and LewandowskiJ.J.: Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 94, 125510 (2005).
39. LewandowskiJ., WangW., and GreerA.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).
40. MacionczykF. and BrücknerW.: Tensile testing of AlCu thin films on polyimide foils. J. Appl. Phys. 86, 4922 (1999).
41. DenisY. and SpaepenF.: The yield strength of thin copper films on Kapton. J. Appl. Phys. 95, 2991 (2004).
42. JangD. and GreerJ.R.: Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat. Mater. 9, 215 (2010).
43. TanH.F., ZhangB., YangY.K., ZhuX.F., and ZhangG.P.: Fracture behavior of sandwich-structured metal/amorphous alloy/metal composites. Mater. Des. 90, 60 (2016).
44. PampilloC.A.: Flow and fracture in amorphous alloys. J. Mater. Sci. 10, 1194 (1975).
45. LiuH.S., ZhangB., and ZhangG.P.: Enhanced toughness and fatigue strength of cold roll bonded Cu/Cu laminated composites with mechanical contrast. Scr. Mater. 65, 891 (2011).
46. WangG., ZhaoD., BaiH., PanM., XiaA., HanB., XiX., WuY., and WangW.: Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses. Phys. Rev. Lett. 98, 235501 (2007).
47. FanZ., XueS., WangJ., YuK.Y., WangH., and ZhangX.: Unusual size dependent strengthening mechanisms of Cu/amorphous CuNb multilayers. Acta Mater. 120, 327 (2016).
48. FanZ., LiuY., XueS., RahimiR.M., BahrD.F., WangH., and ZhangX.: Layer thickness dependent strain rate sensitivity of Cu/amorphous CuNb multilayer. Appl. Phys. Lett. 110, 161905 (2017).
49. SchuhC., NiehT., and KawamuraY.: Rate dependence of serrated flow during nanoindentation of a bulk metallic glass. J. Mater. Res. 17, 1651 (2002).
50. JiangW. and AtzmonM.: Rate dependence of serrated flow in a metallic glass. J. Mater. Res. 18, 755 (2003).
51. NixW.D. and GaoH.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).
52. HuangL., ZhouJ., ZhangS., WangY., and LiuY.: Effects of interface and microstructure on the mechanical behaviors of crystalline Cu-amorphous Cu/Zr nanolaminates. Mater. Des. 36, 6 (2012).
53. BrandlC., GermannT., and MisraA.: Structure and shear deformation of metallic crystalline–amorphous interfaces. Acta Mater. 61, 3600 (2013).
54. WangJ. and MisraA.: An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr. Opin. Solid State Mater. Sci. 15, 20 (2011).
55. TianL., ShanZ-W., and MaE.: Ductile necking behavior of nanoscale metallic glasses under uniaxial tension at room temperature. Acta Mater. 61, 4823 (2013).
56. GuoH., YanP., WangY., TanJ., ZhangZ., SuiM., and MaE.: Tensile ductility and necking of metallic glass. Nat. Mater. 6, 735 (2007).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
VIDEO
Supplementary Materials

Fan supplementary material
Video 1

 Video (46.9 MB)
46.9 MB
VIDEO
Supplementary Materials

Fan supplementary material
Video 2

 Video (81.0 MB)
81.0 MB

Metrics

Full text views

Total number of HTML views: 4
Total number of PDF views: 75 *
Loading metrics...

Abstract views

Total abstract views: 330 *
Loading metrics...

* Views captured on Cambridge Core between 13th July 2017 - 23rd October 2017. This data will be updated every 24 hours.