Skip to main content
×
Home
    • Aa
    • Aa

Tailoring plasticity of metallic glasses via interfaces in Cu/amorphous CuNb laminates

  • Zhe Fan (a1), Qiang Li (a2), Jin Li (a3), Sichuang Xue (a1), Haiyan Wang (a4) and Xinghang Zhang (a2)...
Abstract
Abstract

Metallic glasses (MGs) are known to have high strength, but poor ductility. Prior studies have shown that plasticity in MG can be enhanced by significantly reducing their dimension to nanoscale. Here we show that, via the introduction of certain types of crystalline/amorphous interfaces, plasticity of MG can be prominently enhanced as manifested by the formation of ductile “dimples” in a 2 μm thick amorphous CuNb film. By tailoring the volume fraction and architecture of crystalline/amorphous multilayers, tensile fracture surface of MG can evolve from brittle featureless morphology to containing ductile dimples. In situ micropillar compression studies performed inside a scanning electron microscope show that shear instability in amorphous layers can be inhibited by interfaces. The mechanisms for improving plasticity and fracture resistance of MG via interface and size effect are discussed.

Copyright
Corresponding author
a) Address all correspondence to these authors. e-mail: vanstart2012@gmail.com
b) e-mail: xzhang98@purdue.edu
Footnotes
Hide All

Contributing Editor: Jürgen Eckert

Footnotes
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M.F. Ashby and A.L. Greer : Metallic glasses as structural materials. Scr. Mater. 54, 321 (2006).

L. Tian , Y-Q. Cheng , Z-W. Shan , J. Li , C-C. Wang , X-D. Han , J. Sun , and E. Ma : Approaching the ideal elastic limit of metallic glasses. Nat. Commun. 3, 609 (2012).

A.L. Greer and E. Ma : Bulk metallic glasses: At the ccutting edge of metals research. MRS Bull. 32, 611 (2007).

Z.F. Zhang , J. Eckert , and L. Schultz : Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 (2003).

C.A. Schuh , T.C. Hufnagel , and U. Ramamurty : Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).

A.L. Greer , Y.Q. Cheng , and E. Ma : Shear bands in metallic glasses. Mater. Sci. Eng., R 74, 71 (2013).

H. Choi-Yim and W.L. Johnson : Bulk metallic glass matrix composites. Appl. Phys. Lett. 71, 3808 (1997).

M.L. Lee , Y. Li , and C.A. Schuh : Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater. 52, 4121 (2004).

J. Eckert , J. Das , S. Pauly , and C. Duhamel : Mechanical properties of bulk metallic glasses and composites. J. Mater. Res. 22, 285 (2007).

G. He , W. Löser , J. Eckert , and L. Schultz : Enhanced plasticity in a Ti-based bulk metallic glass-forming alloy by in situ formation of a composite microstructure. J. Mater. Res. 17, 3015 (2002).

G. Chen , J. Cheng , and C.T. Liu : Large-sized Zr-based bulk-metallic-glass composite with enhanced tensile properties. Intermetallics 28, 25 (2012).

D.C. Hofmann , J-Y. Suh , A. Wiest , G. Duan , M-L. Lind , M.D. Demetriou , and W.L. Johnson : Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008).

W. Guo , E. Jägle , J. Yao , V. Maier , S. Korte-Kerzel , J.M. Schneider , and D. Raabe : Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates. Acta Mater. 80, 94 (2014).

A. Donohue , F. Spaepen , R. Hoagland , and A. Misra : Suppression of the shear band instability during plastic flow of nanometer-scale confined metallic glasses. Appl. Phys. Lett. 91, 241905 (2007).

T. Nieh and J. Wadsworth : Bypassing shear band nucleation and ductilization of an amorphous–crystalline nanolaminate in tension. Intermetallics 16, 1156 (2008).

J. Wang , Q. Zhou , S. Shao , and A. Misra : Strength and plasticity of nanolaminated materials. Mater. Res. Lett. 5, 1 (2017).

I. Knorr , N. Cordero , E.T. Lilleodden , and C.A. Volkert : Mechanical behavior of nanoscale Cu/PdSi multilayers. Acta Mater. 61, 4984 (2013).

Y. Wang , J. Li , A.V. Hamza , and T.W. Barbee : Ductile crystalline–amorphous nanolaminates. Proc. Natl. Acad. Sci. U. S. A. 104, 11155 (2007).

B-G. Yoo , J-Y. Kim , Y-J. Kim , I-C. Choi , S. Shim , T.Y. Tsui , H. Bei , U. Ramamurty , and J-I. Jang : Increased time-dependent room temperature plasticity in metallic glass nanopillars and its size-dependency. Int. J. Plast. 37, 108 (2012).

D. Jang , C.T. Gross , and J.R. Greer : Effects of size on the strength and deformation mechanism in Zr-based metallic glasses. Int. J. Plast. 27, 858 (2011).

J. Zhang , G. Liu , S. Lei , J. Niu , and J. Sun : Transition from homogeneous-like to shear-band deformation in nanolayered crystalline Cu/amorphous Cu–Zr micropillars: Intrinsic vs. extrinsic size effect. Acta Mater. 60, 7183 (2012).

M.C. Liu , C.J. Lee , Y.H. Lai , and J.C. Huang : Microscale deformation behavior of amorphous/nanocrystalline multilayered pillars. Thin Solid Films 518, 7295 (2010).

A. Bharathula , S-W. Lee , W.J. Wright , and K.M. Flores : Compression testing of metallic glass at small length scales: Effects on deformation mode and stability. Acta Mater. 58, 5789 (2010).

B.A. Sun and W.H. Wang : The fracture of bulk metallic glasses. Prog. Mater. Sci. 74, 211 (2015).

H. Leamy , T. Wang , and H. Chen : Plastic flow and fracture of metallic glass. Metall. Trans. 3, 699 (1972).

R. Narasimhan , P. Tandaiya , I. Singh , R. Narayan , and U. Ramamurty : Fracture in metallic glasses: Mechanics and mechanisms. Int. J. Fract. 191, 53 (2015).

D. Matthews , V. Ocelik , P. Bronsveld , and J.T.M. De Hosson : An electron microscopy appraisal of tensile fracture in metallic glasses. Acta Mater. 56, 1762 (2008).

C. Gilbert , V. Schroeder , and R. Ritchie : Mechanisms for fracture and fatigue-crack propagation in a bulk metallic glass. Metall. Mater. Trans. A 30, 1739 (1999).

F. Spaepen : On the fracture morphology of metallic glasses. Acta Metall. 23, 615 (1975).

X.J. Gu , S.J. Poon , G.J. Shiflet , and J.J. Lewandowski : Ductile-to-brittle transition in a Ti-based bulk metallic glass. Scr. Mater. 60, 1027 (2009).

Y.H. Liu , G. Wang , R.J. Wang , M.X. Pan , and W.H. Wang : Super plastic bulk metallic glasses at room temperature. Science 315, 1385 (2007).

H. Bei , S. Xie , and E.P. George : Softening caused by profuse shear banding in a bulk metallic glass. Phys. Rev. Lett. 96, 105503 (2006).

J. Xu , U. Ramamurty , and E. Ma : The fracture toughness of bulk metallic glasses. JOM 62, 10 (2010).

X.K. Xi , D.Q. Zhao , M.X. Pan , W.H. Wang , Y. Wu , and J.J. Lewandowski : Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 94, 125510 (2005).

J. Lewandowski , W. Wang , and A. Greer : Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).

H.F. Tan , B. Zhang , Y.K. Yang , X.F. Zhu , and G.P. Zhang : Fracture behavior of sandwich-structured metal/amorphous alloy/metal composites. Mater. Des. 90, 60 (2016).

C.A. Pampillo : Flow and fracture in amorphous alloys. J. Mater. Sci. 10, 1194 (1975).

H.S. Liu , B. Zhang , and G.P. Zhang : Enhanced toughness and fatigue strength of cold roll bonded Cu/Cu laminated composites with mechanical contrast. Scr. Mater. 65, 891 (2011).

G. Wang , D. Zhao , H. Bai , M. Pan , A. Xia , B. Han , X. Xi , Y. Wu , and W. Wang : Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses. Phys. Rev. Lett. 98, 235501 (2007).

Z. Fan , S. Xue , J. Wang , K.Y. Yu , H. Wang , and X. Zhang : Unusual size dependent strengthening mechanisms of Cu/amorphous CuNb multilayers. Acta Mater. 120, 327 (2016).

Z. Fan , Y. Liu , S. Xue , R.M. Rahimi , D.F. Bahr , H. Wang , and X. Zhang : Layer thickness dependent strain rate sensitivity of Cu/amorphous CuNb multilayer. Appl. Phys. Lett. 110, 161905 (2017).

C. Schuh , T. Nieh , and Y. Kawamura : Rate dependence of serrated flow during nanoindentation of a bulk metallic glass. J. Mater. Res. 17, 1651 (2002).

W. Jiang and M. Atzmon : Rate dependence of serrated flow in a metallic glass. J. Mater. Res. 18, 755 (2003).

L. Huang , J. Zhou , S. Zhang , Y. Wang , and Y. Liu : Effects of interface and microstructure on the mechanical behaviors of crystalline Cu-amorphous Cu/Zr nanolaminates. Mater. Des. 36, 6 (2012).

C. Brandl , T. Germann , and A. Misra : Structure and shear deformation of metallic crystalline–amorphous interfaces. Acta Mater. 61, 3600 (2013).

J. Wang and A. Misra : An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr. Opin. Solid State Mater. Sci. 15, 20 (2011).

L. Tian , Z-W. Shan , and E. Ma : Ductile necking behavior of nanoscale metallic glasses under uniaxial tension at room temperature. Acta Mater. 61, 4823 (2013).

H. Guo , P. Yan , Y. Wang , J. Tan , Z. Zhang , M. Sui , and E. Ma : Tensile ductility and necking of metallic glass. Nat. Mater. 6, 735 (2007).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
VIDEO
Supplementary Materials

Fan supplementary material
Video 2

 Video (81.0 MB)
81.0 MB
VIDEO
Supplementary Materials

Fan supplementary material
Video 1

 Video (46.9 MB)
46.9 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 23 *
Loading metrics...

Abstract views

Total abstract views: 78 *
Loading metrics...

* Views captured on Cambridge Core between 13th July 2017 - 25th July 2017. This data will be updated every 24 hours.