Skip to main content
×
Home
    • Aa
    • Aa

Temperature dependence of the indentation size effect

  • Oliver Franke, Jonathan C. Trenkle and Christopher A. Schuh (a1)
Abstract

The influence of temperature on the indentation size effect is explored experimentally. Copper is indented on a custom-built high-temperature nanoindenter at temperatures between ambient and 200 °C, in an inert atmosphere that precludes oxidation. Over this range of temperatures, the size effect is reduced considerably, suggesting that thermal activation plays a major role in determining the length scale for plasticity.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: schuh@mit.edu
References
Hide All
1. B. Backes , K. Durst , M. Goken Determination of plastic properties of polycrystalline metallic materials by nanoindentation: Experiments and finite element simulations. Philos. Mag. 86, 5541(2006)

2. K. Durst , B. Backes , O. Franke , M. Goken Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 54, 2547(2006)

3. K. Durst , B. Backes , M. Goken Indentation size effect in metallic materials: Correcting for the size of the plastic zone. Scr. Mater. 52, 1093(2005)

4. K. Durst , O. Franke , A. Bohner , M. Goken Indentation size effect in Ni–Fe solid solutions. Acta Mater. 55, 6825(2007)

5. A.A. Elmustafa , J.A. Eastman , M.N. Rittner , J.R. Weertman , D.S. Stone Indentation size effect: Large grained aluminum versus nanocrystalline aluminum-zirconium alloys. Scr. Mater. 43, 951(2000)

6. A.A. Elmustafa , D.S. Stone Indentation size effect in polycrystalline F.C.C. metals. Acta Mater. 50, 3641(2002)

7. W.D. Nix , H. Gao Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411(1998)

8. M. Rester , C. Motz , R. Pippan Indentation across size scales—A survey of indentation-induced plastic zones in copper {1 1 1} single crystals. Scr. Mater. 59, 742(2008)

9. Y. Huang , H. Gao , W.D. Nix , J.W. Hutchinson Mechanism-based strain gradient plasticity—II. Analysis. J. Mech. Phys. Solids 48, 99(2000)

10. N.A. Fleck , J.W. Hutchinson A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245(2001)

11. N.A. Fleck , J.W. Hutchison Strain gradient plasticity. Adv. Appl. Mech. 33, 295(1997)

12. N.A. Fleck , G.M. Muller , M.F. Ashby , J.W. Hutchinson Strain gradient plasticity: Theory and experiment. Acta Metall. Mater. 42, 475(1994)

13. H. Gao , Y. Huang , W.D. Nix , J.W. Hutchinson Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Solids 47, 1239(1999)

14. W.C. Oliver , G.M. Pharr An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564(1992)

15. M.F. Doerner , W.D. Nix A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601(1986)

16. B. Backes , Y.Y. Huang , M. Göken , K. Durst The correlation between the internal material length scale and the microstructure in nanoindentation experiments and simulations using the conventional mechanism-based strain gradient plasticity theory. J. Mater. Res. 24, 1197(2009)

17. A.C. Lund , A.M. Hodge , C.A. Schuh Incipient plasticity during nanoindentation at elevated temperatures. Appl. Phys. Lett. 85, 1362(2004)

18. J.K. Mason , A.C. Lund , C.A. Schuh Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys. Rev. B 73, 054102(2006)

19. C.A. Schuh , C.E. Packard , A.C. Lund Nanoindentation and contact-mode imaging at high temperatures. J. Mater. Res. 21, 725(2006)

23. J. Engl , G. Heidtkamp The temperature dependence of the cone indentation hardness in metals. Z. Phys. 95, 30(1935)

25. A.G. Atkins , D. Tabor Plastic indentation in metals with cones. J. Mech. Phys. Solids 13, 149(1965)

26. M.R. Staker , D.L. Holt The dislocation cell size and dislocation density in copper deformed at temperatures between 25 and 700 °C. Acta Metall. 20, 569(1972)

27. K.A. Nibur , F. Akasheh , D.F. Bahr Analysis of dislocation mechanisms around indentations through slip step observations. J. Mater. Sci. 42, 889(2007)

28. K.A. Nibur , D.F. Bahr Identifying slip systems around indentations in FCC metals. Scr. Mater. 49, 1055(2003)

29. N. Christodoulou , J.J. Jonas Work hardening and rate sensitivity material coefficients for OFHC Cu and 99.99% A1. Acta Metall. 32, 1655(1984)

30. J.Y. Shu , N.A. Fleck The prediction of a size effect in microindentation. Int. J. Solids Struct. 35, 1363(1998)

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 51 *
Loading metrics...

Abstract views

Total abstract views: 176 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th October 2017. This data will be updated every 24 hours.