Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-06-09T12:42:37.892Z Has data issue: false hasContentIssue false

Tetraoctylthio- and tetraoctyloxy-substituted lead phthalocyanines: Synthesis, characterization, liquid-crystalline properties, and thin film studies

Published online by Cambridge University Press:  10 November 2011

Sinem Tuncel
Affiliation:
Department of Chemistry, Gebze Institute of Technology, Gebze 41400, Kocaeli, Turkey
Tamara V. Basova
Affiliation:
Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
Vitaly G. Kiselev
Affiliation:
Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk 630090, Russia; and Novosibirsk State University, Novosibirsk 630090, Russia
Sergei A. Gromilov
Affiliation:
Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
Irina V. Jushina
Affiliation:
Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
Mahmut Durmuş*
Affiliation:
Department of Chemistry, Gebze Institute of Technology, Gebze 41400, Kocaeli, Turkey
Ayşe G. Gürek
Affiliation:
Department of Chemistry, Gebze Institute of Technology, Gebze 41400, Kocaeli, Turkey
Vefa Ahsen
Affiliation:
Department of Chemistry, Gebze Institute of Technology, Gebze 41400, Kocaeli, Turkey; and Materials Institute, TUBITAK-Marmara Research Center, 41470 Gebze, Kocaeli, Turkey
*
a)Address all correspondence to this author. e-mail: durmus@gyte.edu.tr
Get access

Abstract

Peripherally and nonperipherally tetrakisoctylthio- and tetrakisoctyloxy-substituted lead(II) phthalocyanines (PbPcs) were synthesized and characterized using elemental analysis, nuclear magnetic resonance, ultra violet–visible (UV-Vis), infrared (IR), and mass spectroscopies. The mesogenic properties of PbPcs were studied by differential scanning calorimetry, polarized optical microscopy, and x-ray diffraction. The effects of the substitution position and nature of linkage heteroatom on the liquid-crystalline properties and the orientation of the molecules were also studied. Visible absorption spectroscopy yielded an evidence of a thermally induced molecular reorganization in the films. Reflection–absorption IR spectroscopy was used to study the preferential orientation of molecules relative to the substrate surface. The intense bands in the IR spectra of the PbPcs were assigned with the aid of quantum chemical (density functional theory) computations.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.McKeown, N.B.: Phthalocyanine Materials: Synthesis, Structure, Function (Cambridge University Press, Cambridge, 1998).Google Scholar
2.Simon, J. and Bassoul, P.: Design of Molecular Materials: Supramolecular Engineering (Wiley-VCH, Weinheim, 2000).Google Scholar
3.Gould, R.D. and Shafai, T.S.: Conduction in lead phthalocyanine films with aluminium electrodes. Thin Solid Films 373, 89 (2000).Google Scholar
4.Ahmida, M., Larocque, R., Ahmed, M.S., Vacaru, A., Donnio, B., Guillonb, D., and Eichhorn, S.H.: Halide effect in electron rich and deficient discotic phthalocyanines. J. Mater. Chem. 20, 1292 (2010).CrossRefGoogle Scholar
5.Eichhorn, H.: Mesomorphic phthalocyanines, tetraazaporphyrins, porphyrins and triphenylenes as charge-transporting materials. J. Porphyrins Phthalocyanines 4, 88 (2000).3.0.CO;2-6>CrossRefGoogle Scholar
6.Eichhorn, H., Bruce, D.W., and Wöhrle, D.: Amphitropic mesomorphic phthalocyanines: A new approach to highly ordered layers. Adv. Mater. 10, 419 (1998).3.0.CO;2-U>CrossRefGoogle Scholar
7.Ambily, S., Xavier, F.P., and Menon, C.S.: Photoconductivity measurements in lead phthalocyanine thin films. Mater. Lett. 41, 5 (1999).CrossRefGoogle Scholar
8.García-Frutos, E.M., de la Torre, G., Vázquez, P., Shirk, J.S., and Torres, T.: Synthesis and optical properties of regioisomerically pure alkynyl-bridged bis(phthalocyanines). Eur. J. Org. Chem. 2009, 3212 (2009).Google Scholar
9.Modibane, D.K. and Nyokong, T.: Synthesis, photophysical and nonlinear optical properties of microwave synthesized 4-tetra and octa-substituted lead phthalocyanines. Polyhedron 28, 1475 (2009).CrossRefGoogle Scholar
10.Rodriguez, A., Vergara, M.E.S., Montalvo, V.G., Ortiz, A., and Alvarez, J.R.: Thin films of molecular materials synthesized from C32H20N10M (M = Co, Pb, Fe): Film formation, electrical and optical properties. Appl. Surf. Sci. 256, 3374 (2010).CrossRefGoogle Scholar
11.Piechocki, C., Boulou, J.C., and Simon, J.: Discotic mesogens possessing an electrical dipole moment perpendicular to the molecular plane: Synthesis and mesomorphic properties. Mol. Cryst. Liq. Cryst. 149, 115 (1987).CrossRefGoogle Scholar
12.Burnham, P.M., Cook, M.J., Gerrard, L.A., Heeney, M.J., and Hughes, D.L.: Structural characterization of a red phthalocyanine. Chem. Commun. 34, 2064 (2003).CrossRefGoogle Scholar
13.Snow, A.W. and Jarvis, N.L.: Molecular association and monolayer formation of soluble phthalocyanine compounds. J. Am. Chem. Soc. 106, 4706 (1984).CrossRefGoogle Scholar
14.Ford, W.T., Sumner, L., Zhu, W., Chang, Y.H., Um, P.J., Choi, K.H., Heiney, P.A., and Maliszewskyj, N.C.: Liquid crystalline octa-(2-ethylhexyloxy) platinum and lead phthalocyanines. N. J. Chem. 18, 495 (1994).Google Scholar
15.Piechocki, C., Simon, J., Skoulios, A., Gullion, D., and Weber, P.: Annelides. 7. Discotic mesophases obtained from substituted metallophthalocyanines. Toward liquid crystalline one-dimensional conductors. J. Am. Chem. Soc. 104, 5245 (1982).CrossRefGoogle Scholar
16.van der Pol, J.F., Neeleman, E., Zwikker, J.W., Nolte, R.J.M., Drenth, W., Aerts, J., Visser, R., and Picken, S.J.: Homologous series of liquid-crystalline metal free and copper octa- n alkoxyphthalocyanines. Liq. Cryst. 6, 577 (1989).CrossRefGoogle Scholar
17.Bian, Y., Li, L., Dou, J., Cheng, D.Y.Y., Li, R., Ma, C., Ng, D.K.P., Kobayashi, N., and Jiang, J.: Synthesis, structure, spectroscopic properties and electrochemistry of (1,8,15,22-tetrasubstituted phthalocyaninato)lead complexes. Inorg. Chem. 43, 7539 (2004).CrossRefGoogle Scholar
18.Dinçer, H.A., Çerlek, H., Gül, A., and Koçak, M.B.: Synthesis and spectral properties of tetra- and octa-substituted lead phthalocyanines. Main Group Chem. 4, 209 (2005).Google Scholar
19.Achar, B.N., Kumar, T.M.M., and Lokesh, K.S.: A comparative study of microwave versus conventional synthesis of lead phthalocyanine complexes. J. Porphyrins Phthalocyanines 9, 872 (2005).CrossRefGoogle Scholar
20.Hanack, M., Beck, A., and Lehmann, H.: Synthesis of liquid crystalline phthalocyanines. Synthesis 8, 703 (1987).CrossRefGoogle Scholar
21.Duan, Q., Xia, H., Liu, D., Wang, F., Toshifumi, S., and Toyoji, K.: Preparation and optical properties of reverse saturable absorption polymer with alkoxy phthalocyanine Pb. Proc. SPIE Int. Soc. Opt. Eng. 6028, 602819 (2005).Google Scholar
22.Basova, T., Gürek, A.G., Atilla, D., Hassan, A.K., and Ahsen, V.: Synthesis and characterization of new mesomorphic octakis(alkylthio)-substituted lead phthalocyanines and their films. Polyhedron 26, 5045 (2007).CrossRefGoogle Scholar
23.Weber, P., Guillon, D., and Skoulios, A.: Antiferroelectric stacking in lead phthalocyanine columnar mesophases. J. Phys. Chem. A 91, 2242 (1987).Google Scholar
24.Hanack, M., Gül, A., Hirsch, A., Braja, K., Subramanian, L.R., and Witke, E.: Synthesis and characterization of soluble phthalocyanines: Structure-property relationship. Liq. Cryst. 187, 365 (1990).Google Scholar
25.Engel, M.K., Bassoul, P., Bosio, L., Lehmann, H., Hanack, M., and Simon, J.: Mesomorphic molecular materials. Influence of chain length on the structural properties of octa-alkyl substituted phthalocyanines. Liq. Cryst. 15, 709 (1993).CrossRefGoogle Scholar
26.Atilla, D., Gürek, A.G., Basova, T.V., Kiselev, V.G., Hassan, A., Sheludyakova, L.A., and Ahsen, V.: The synthesis and characterization of novel mesomorphic octa- and tetra-alkylthio-substituted lead phthalocyanines and their films. Dyes Pigments 88, 280 (2011).Google Scholar
27.Masurel, D., Sirlin, C., and Simon, J.: Annelides. 21. Highly ordered columnar liquid crystal obtained from new octasubstituted phthalocyanine mesogen. N. J. Chem. 11, 455 (1987).Google Scholar
28.Ohta, K., Jacquemin, L., Sirlin, C., Bosio, L., and Simon, J.: Influence of the nature of the side-chains on the mesomorphic properties of octasubstituted phthalocyanine derivatives. Annelides-XXIX. N. J. Chem. 12, 751 (1988).Google Scholar
29.Suda, Y., Shigehara, K., Yamada, A., Matsuda, H., Okada, S., and Masaki, A.: Reversible phase transition and third order nonlinearity of phthalocyanine derivatives. Proc. SPIE Int. Soc. Opt. Eng. 1560, 75 (1991).Google Scholar
30.Ozoemena, K. and Nyokong, T.: Octabutylthiophthalocyaninatoiron(II): Electrochemical properties and interaction with cyanide. Dalton Trans. 8, 1806 (2002).CrossRefGoogle Scholar
31.Gürek, A.G., Durmuş, M., and Ahsen, V.: Synthesis and mesomorphic properties of tetra-and octa-substituted phthalocyanines. N. J. Chem. 28, 693 (2004).Google Scholar
32.Zhang, Y., Zhang, X., Liu, Z., Bian, Y., and Jiang, J.: Structures and properties of 1,8,15,22-tetrasubstituted phthalocyaninato-lead complexes: The substitution effect study based on density-functional theory calculations. J. Phys. Chem. A 109, 6363 (2005).Google Scholar
33.del Rey, B., Keller, U., Torres, T., Rojo, G., Agullo-Lopez, F., Nonell, S., Mart, C., Brasselet, S., Ledoux, I., and Zyss, J.: Synthesis and nonlinear optical, photophysical, and electrochemical properties of subphthalocyanines. J. Am. Chem. Soc. 120, 12808 (1998).CrossRefGoogle Scholar
34.Berneth, H., Bruder, F.K., Hagen, R., Hassenrueck, K., Kostromine, S., Krueger, C.M., Meyer-Friedrichsen, T., Stawitz, J.W., Oser, R., and Falkner, O.: Method for preparing 3-alkoxyphthalocyanines from alcohols and 3-nitrophthalocyanine in the presence of a base. European Patent EP1424323 (2004).Google Scholar
35.Perin, D.D. and Armarego, W.L.: Purification of Laboratory Chemicals (Pergamon Press, Oxford, 1989).Google Scholar
36.Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
37.Hay, P.J. and Wadt, W.R.: Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299 (1985).CrossRefGoogle Scholar
38.Frisch, M.J.T., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A.: Gaussian 03, Revision E.01 (Gaussian, Inc., Wallingford, CT, 2004).Google Scholar
39.Ukei, K.: Lead phthalocyanine. Acta Crystallogr. B 29, 2290 (1973).CrossRefGoogle Scholar
40.Iyechika, K., Yakushi, Y., Ikemoto, I., and Kuroda, H.: Structure of lead phthalocyanine (Triclinic Form). Acta Crystallogr. B 38, 766 (1982).Google Scholar
41.Mack, J. and Stillman, M.J.: Photochemical formation of the anion radical of zinc phthalocyanine and analysis of the absorption and magnetic circular dichroism spectral data. Assignment of the optical spectrum of [ZnPc(-3)]-. J. Am. Chem. Soc. 116, 1292 (1994).CrossRefGoogle Scholar
42.Konami, M., Hatano, M., and Tajiri, A.: Inter-ring overlap integrals in dimer complexes of phthalocyanines and porphyrins. Chem. Phys. Lett. 166, 605 (1990).CrossRefGoogle Scholar
43.Ohta, K., Hatsusaka, K., Sugibayashi, M., Ariyoshi, M., Ban, K., Maeda, F., Naito, R., Nishizawa, K., van de Craats, A.M., and Warman, J.M.: Discotic liquid crystalline semiconductors. Mol. Cryst. Liq. Cryst. 397, 25 (2003).CrossRefGoogle Scholar
44.Cook, M.J., Mayes, D.A., and Poynter, R.H.: Spectroscopic monitoring of thermally induced molecular reorganisations within spin-coated and Langmuir-Blodgett films of mesogenic phthalocyanines. J. Mater. Chem. 5, 2233 (1995).Google Scholar
45.Cook, M.J.: Advances in spectroscopy, in Spectroscopy of New Materials, edited by Clark, R.J.H. and Hester, R.E. (Wiley, Chichester, 1993), p. 87.Google Scholar
46.Mizuguchi, J.R.G. and Karfunkel, H.R.: Solid-state spectra of titanylphthalocyanine as viewed from molecular distortion. J. Phys. Chem. 99, 16217 (1995).Google Scholar
47.Miyamoto, A., Nichogi, K., Taomoto, A., Nambu, T., and Murakami, M.: Structural control of evaporated lead-phthalocyanine films. Thin Solid Films 256, 64 (1995).Google Scholar
48.Coppede, N., Toccoli, T., Pallaoro, A., Siviero, F., Walzer, K., Castriota, M., Cazzanelli, E., and Iannotta, S.: Polymorphism and phase control in titanyl phthalocyanine thin films grown by supersonic molecular beam deposition. J. Phys. Chem. A 111, 12550 (2007).CrossRefGoogle ScholarPubMed
49.Sleven, J., Cardinaels, T., Binnemans, K., Guillon, D., and Donnio, B.: Thermal and optical behaviour of octa-alkoxy substituted phthalocyaninatovanadyl complexes. Liq. Cryst. 29, 1425 (2002).CrossRefGoogle Scholar
50.Cook, M.J.: Thin film formulations of substituted phthalocyanines. J. Mater. Chem. 6, 677 (1996).CrossRefGoogle Scholar
51.Del Cano, T., Parra, V., Rodriguez-Mendez, M.L., Aroca, R.F., and De Saja, J.A.: Characterization of evaporated trivalent and tetravalent phthalocyanines films: Different degree of organization. Appl. Surf. Sci. 246, 327 (2005).Google Scholar
52.Debe, M.K.: Optical probes of organic thin films: Photons-in and Photons-out. Prog. Surf. Sci. 24, 1 (1987).CrossRefGoogle Scholar
53.Hayden, B.E.: Vibrational Spectroscopy of Molecules on Surfaces, Methods of Surface Characterization (Plenum Press, New York, 1987).Google Scholar
54.Basova, T., Gürek, A.G., and Ahsen, V.: Investigation of liquid-crystalline behavior of nickel octakisalkylthiophthalocyanines and orientation of their films. Mater. Sci. Eng., C 22, 99 (2002).Google Scholar
55.de Cupere, V., Tant, J., Viville, P., Lazzaroni, R., Osikowicz, W., Salaneck, W.R., and Geerts, Y.H.: Effect of interfaces on the alignment of a discotic liquid crystalline phthalocyanine. Langmuir 22, 7798 (2006).Google Scholar
56.Basova, T.V., Durmuş, M., Gürek, A.G., Ahsen, V., and Hassan, A.K.: Effect of interface on the orientation of the liquid crystalline nickel phthalocyanine films. J. Phys. Chem. C 113, 19251 (2009).Google Scholar
57.Sergeyev, S., Pisula, W., and Geerts, Y.H.: Discotic liquid crystals: A new generation of organic semiconductors. Chem. Soc. Rev. 36, 1902 (2007).CrossRefGoogle ScholarPubMed
Supplementary material: File

Tuncel Supplementary Material

Tuncel Supplementary Material

Download Tuncel Supplementary Material(File)
File 1 MB