Skip to main content Accessibility help

Texture-engineered ceramics—Property enhancements through crystallographic tailoring

  • Gary L. Messing (a1), Stephen Poterala (a1), Yunfei Chang (a1), Tobias Frueh (a1), Elizabeth R. Kupp (a1), Beecher H. Watson (a1), Rebecca L. Walton (a1), Michael J. Brova (a1), Anna-Katharina Hofer (a2), Raul Bermejo (a2) and Richard J. Meyer (a3)...
  • Please note a correction has been issued for this article.


Texture-engineered ceramics enable access to a vast array of novel texture-property relations leading to property values ranging between those of single crystals and isotropic bulk ceramics. Recently developed templated grain growth and magnetic alignment texturing methods yield high quality crystallographic texture, and thus significant advances in achievable texture-engineered properties in magnetic, piezoelectric, electronic, optical, thermoelectric, and structural ceramics. In this paper, we outline the fundamental basis for these texture-engineered properties and review recent contributions to the field of texture-engineered ceramics with an update on the properties of textured lead-free and lead-based piezoelectrics. We propose that further property improvements can be realized through development of processes that improve crystallographic alignment of the grain structure, create biaxial texture, and explore a wider array of crystallographic orientations. There is a critical need to model the physics of texture-engineered ceramics, and more comprehensively characterize texture, thus enabling testing of texture orientation-property relations and materials performance. We believe that in situ measurements of texture evolution can lead to a more fundamental and comprehensive understanding of the mechanisms of texture development.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

This author was Editor in Chief during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to

Contributing Editor: Nahum Travitzky

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.



Hide All
1. Rathenau, G.W., Smit, J., and Stuyts, A.L.: Ferromagnetic properties of hexagonal iron-oxide compounds with and without a preferred orientation. Z. Physik 133, 250 (1952).
2. Messing, G.L., Trolier-McKinstry, T., Sabolsky, E.M., Duran, C., Kwon, S., Brahmaroutu, B., Park, P., Yilmaz, H., Rehrig, P.W., Eitel, K.B., Suvaci, E., Seabaugh, M., and Oh, K.S.: Templated grain growth of textured piezoelectric ceramics. Crit. Rev. Solid State Mater. Sci. 29, 45 (2004).
3. Jin, S. and Graebner, J.E.: Processing and fabrication techniques for bulk high-T c superconductors: A critical review. Mater. Sci. Eng., B 7, 243 (1991).
4. Guilmeau, E., Itahara, H., Tani, T., Chateigner, D., and Grebille, D.: Quantitative texture analysis of grain-aligned (Ca2CoO3)0.62CoO2 ceramics processed by the reactive-templated grain growth method. J. Appl. Phys. 97, 064902 (2005).
5. Mao, X., Wang, S., Shimai, S., and Guo, J.: Transparent polycrystalline alumina ceramics with orientated optical axes. J. Am. Ceram. Soc. 91, 3431 (2008).
6. Imamura, H., Hirao, K., Brito, M.E., Toriyama, M., and Kanzaki, S.: Further improvement in mechanical properties of highly anisotropic silicon nitride ceramics. J. Am. Ceram. Soc. 83, 495 (2000).
7. Youngblood, G.E. and Gordon, R.S.: Texture-conductivity relationships in polycrystalline lithia-stabilized β″-alumina. Ceramurgia Intl. 4, 93 (1978).
8. Heuer, A.H., Sellers, D.J., and Rhodes, W.H.: Hot-working of aluminum oxide: I. Primary recrystallization and texture. J. Am. Ceram. Soc. 52, 468 (1969).
9. Carman, A., Pereloma, E., and Chen, Y.: Hot forging of a textured α-SiAlON ceramic. J. Am. Ceram. Soc. 89, 478 (2006).
10. Went, J.J., Rathenau, G.W., Gorter, E.W., and van Oosterhout, G.W.: Hexagonal iron-oxide compounds as permanent-magnet materials. Phys. Rev. 86, 424 (1952).
11. Goyal, A., Feenstra, R., List, F.A., Paranthaman, M., Lee, D.F., Kroeger, D.M., Beach, D.B., Morrell, J.S., Chirayil, T.G., Verebelyi, D.T., Cui, X., Specht, E.D., Christen, D.K., and Martin, P.M.: Using RABiTS to fabricate high-temperature superconducting wire. JOM 51, 19 (1999).
12. Jin, S., Sherwood, R.C., Dover, R.B. van, Tiefel, T.H., and Johnson, D.W. Jr.: High TC superconductors-composite wire fabrication. Appl. Phys. Lett. 51, 203 (1987).
13. Tani, T.: Texture engineering of electronic ceramics by the reactive-templated grain growth method. J. Ceram. Soc. Jpn. 114, 363 (2006).
14. Yilmaz, H., Messing, G.L., and Trolier-McKinstry, S.: (Reactive) templated grain growth of textured sodium bismuth titanate (Na1/2Bi1/2TiO3–BaTiO3) ceramics–I. Processing. J. Electroceram. 11, 207 (2003).
15. Sakka, Y. and Suzuki, T.S.: Textured development of feeble magnetic ceramics by colloidal processing under high magnetic field. J. Ceram. Soc. Jpn. 113, 26 (2005).
16. Seabaugh, M.M., Kerscht, I.H., and Messing, G.L.: Texture development by templated grain growth in liquid phase sintered α-alumina. J. Am. Ceram. Soc. 80, 1181 (1997).
17. Suzuki, T.S., Uchikoshi, T., and Sakka, Y.: Control of texture in alumina by colloidal processing in a strong magnetic field. Sci. Technol. Adv. Mater. 7, 356 (2006).
18. Jones, J.L., Iverson, B.J., and Bowman, K.J.: Texture and anisotropy of polycrystalline piezoelectrics. J. Am. Ceram. Soc. 90, 2297 (2007).
19. Lotgering, F.K.: Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I. J. Inorg. Nucl. Chem. 9, 113 (1959).
20. Brosnan, K.H., Messing, G.L., Meyer, R.J. Jr., and Vaudin, M.D.: Texture measurements in 〈001〉 fiber-oriented PMN–PT. J. Am. Ceram. Soc. 89, 1965 (2006).
21. Dollase, W.A.: Correction for preferred orientation in powder diffractometry: Application of the March model. J. Appl. Crystallogr. 19, 267 (1986).
22. Landau, L.D., Pitaevskii, L.P., and Liftshitz, E.M.: Electrodynamics of Continuous Media, 2nd ed., Vol. 8, Course of Theoretical Physics (Oxford University Press, Oxford, England, 2004).
23. Pullar, R.C.: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191 (2012).
24. Stuijts, A.L., Rathenau, G.W., and Weber, G.H.: Ferroxdure II and III, anisotropic permanent magnet materials. In Ferrites, Smit, J. and Wijn, H.P.J., eds., Vol. 16 (Philips Technical Library, Eindhoven, Netherlands, 1959); p. 141.
25. Chen, Y., Daigle, A., Fitchorov, T., Hu, B., Geiler, M., and Geiler, A.: Electronic tuning of magnetic permeability in Co2Z hexaferrite toward high frequency electromagnetic device miniaturization. Appl. Phys. Lett. 98, 202502 (2011).
26. Jian, G., Meng, F., Zhou, D., Fu, Q., Du, Z., and Yan, C.: Fabrication of textured CoFe2O4 ceramics by novel RTGG method using rod-like α-FeOOH particles as templates. Mater. Chem. Phys. 162, 380 (2015).
27. Chang, P., He, L., Wei, D., and Wang, H.: Textured z-type hexaferrite Ba3Co2Fe24O41, ceramics with high permeability by reactive templated grain growth method. J. Eur. Ceram. Soc. 36, 2519 (2016).
28. Rush, J.P., May-Miller, C.J., Palmer, K.G.B., Rutter, N.A., Dennis, A.R., Shi, Y-H., Cardwell, D.A., and Durrell, J.H.: Transport J c in bulk superconductors: A practical approach?. IEEE Trans. Appl. Supercond. 26, 6800904 (2016).
29. Raveau, B.: Texturing of high-T c superconductors. Supercond. Sci. Technol. 12, R115 (1999).
30. His, C., Chardon, N., Kuentzler, R., and Vilminot, S.: Elaboration and characterization of YBa2Cu3O7−x thick tapes. J. Mater. Sci. 26, 4829 (1991).
31. Feldmann, D.M., Holesinger, T.G., Feenstra, R., and Larbalestier, D.C.: A review of the influence of grain boundary geometry on the electromagnetic properties of polycrystalline YBa2Cu3O7−x films. J. Am. Ceram. Soc. 91, 1869 (2008).
32. Goyal, A., Paranthaman, M.P., and Schopp, U.: The RABiTS approach: Using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors. MRS Bull. 29, 552 (2004).
33. Susner, M.A., Daniels, T.W., Sumption, M.D., Rindfleisch, M.A., Thong, C.J., and Collings, E.W.: Drawing induced texture and the evolution of superconductive properties with heat treatment time in powder-in-tube in situ processed MgB2 strands. Supercond. Sci. Tech. 25, 065002 (2012).
34. Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F.K.: Orientation dependence of grain-boundary critical currents in YBa2Cu3O7−δ bicrystals. Phys. Rev. Lett. 61, 219 (1988).
35. Li, G-Z., Li, J-W., and Yang, W-M.: A combined powder melt and infiltration growth technique for fabricating nano-composited Y−Ba−Cu−O single-grain superconductor. Supercond. Sci. Technol. 28, 105002 (2015).
36. Shi, Y., Durrell, J.H., Dennis, A.R., Huang, K., Namburi, D.K., Zhou, D., and Cardwell, D.A.: Multiple seeding for the growth of bulk GdBCO-Ag superconductors with single grain behaviour. Supercond. Sci. Technol. 30, 015003 (2017).
37. Bhargava, A., Schwartz, J., Alarco, J.A., and Mackinnon, I.D.R.: Progress towards slip-casting YBa2Cu3O7−x monoliths. Mater. Lett. 30, 199 (1997).
38. Pathak, L.C.: Fabrication and sintering characteristics of doctor blade YBCO-Ag tapes. Ceram. Int. 30, 417 (2004).
39. Dorris, S.E., Lanagan, M.T., Moffatt, D.M., Leu, H.J., Youngdahl, C.A., Balachandran, U., Cazzato, A., Bloomberg, D.E., and Goretta, K.C.: Y2BaCuO5 as a substrate for YBa2Cu3O x . Jpn. J. Appl. Phys. 28, 1415 (1989).
40. McGinn, P.J., Chen, W., Zhu, N., Balachandran, U., and Lanagan, M.T.: Texture processing of extruded YBa2Cu3O6+x wires by zone melting. Phys. C 165, 480 (1990).
41. Grader, G.S. and Johnson, D.W. Jr.: Forming methods for high T c superconductors. Thermochim. Acta 174, 239 (1991).
42. Frase, K.G., Farrington, G.C., and Thomas, J.O.: Proton transport in the β/β″-aluminas. Annu. Rev. Mater. Sci. 14, 279 (1984).
43. Beckers, J.V.L., van der Bent, K.J., and de Leeuw, S.W.: Ionic conduction in Na+-β-alumina studied by molecular dynamics simulation. Solid State Ionics 133, 217 (2000).
44. Fergus, J.W.: Ion transport in sodium ion conducting solid electrolytes. Solid State Ionics 227, 102 (2012).
45. de Jonghe, L.C. and Hall, J.B.: Ion current concentration in grain boundaries of sodium beta alumina. Scr. Mater. 10, 285 (1976).
46. De Jonghe, L.C.: Grain boundaries and ionic conduction in sodium beta alumina. J. Mater. Sci. 14, 33 (1979).
47. Kuo, C.K., Tan, A., and Nicholson, P.S.: Solid state ionics impedance analysis as a tool for designing β″-alumina microstructures. Solid State Ionics 48, 315 (1991).
48. Kishimoto, A. and Shimokawa, K.: Preferential orientation dependent mechanical and electrical properties in Naβ-alumina ceramics. Key Eng. Mater. 301, 147 (2006).
49. Hooper, A.: A study oft he electrical properties of single-crystal and polycrystalline β-alumina using complex plane analysis. J. Phys. D: Appl. Phys. 10, 1487 (1977).
50. Tan, A., Kuo, C.K., and Nicholson, P.S.: Preparation and characterization of textured polycrystalline Na and K-β-aluminas. Solid State Ionics 42, 233 (1990).
51. Tan, A., Kun Kuo, C., and Nicholson, P.S.: The influence of grain-boundaries on the conductivity and ion-exchange rate of β″-alumina polycrystalline isomorphs. Solid State Ionics 45, 137 (1991).
52. Ohta, T., Harata, M., and Imai, A.: Preferred orientation on beta-alumina ceramics. Mater. Res. Bull. 11, 1343 (1976).
53. Virkar, A.V., Miller, G.R., and Gordon, R.S.: Resistivity-microstructure relations in lithia-stabilized polycrystalline β″-alumina. J. Am. Ceram. Soc. 61, 250 (1978).
54. Butchereit, E., Schoonman, J., Zandbergen, H.W., Lutz-Elsner, C., Schreiber, M., and Wang, P.: Microstructure-conductivity relationships in solid anisotropic ionically conducting materials. Mater. Res. Soc. Symp. Proc. 369, 433 (1995).
55. De Kroon, A.P., Gstrein, F., Schafer, G.W., and Aldinger, F.: Ionic conductivity of dense K-β-alumina ceramics: Microstructural dependence and the influence of phase transformations. Solid State Ionics 133, 107 (2000).
56. Asaoka, H., Ogawa, R., Hayashi, H., and Kishimoto, A.: Influence of kinds of aluminum source on the preferential orientation and properties of Naβ-alumina ceramics. J. Ceram. Soc. Jpn. 114, 719 (2006).
57. Shi, J.L., Gao, J.H., and Lin, Z.X.: The relation between microstructure and ionic conductivity of hot-pressed β-Al2O3 . J. Mater. Sci. 24, 1827 (1989).
58. Koganei, K., Oyama, T., Inada, M., Enomoto, N., and Hayashi, K.: C-axis oriented β″-alumina ceramics with anisotropic ionic conductivity prepared by spark plasma sintering. Solid State Ionics 267, 22 (2014).
59. Subasri, R. and Näfe, H.: Texture in Na-β-Al2O3 due to microwave processing. Mater. Chem. Phys. 112, 16 (2008).
60. Sakka, Y., Honda, A., Suzuki, T.S., and Moriyoshi, Y.: Fabrication of oriented ß-alumina from porous bodies by slip casting in a high magnetic field. Solid State Ionics 172, 341 (2004).
61. Sakka, Y., Suzuki, T.S., and Uchikoshi, T.: Fabrication and some properties of textured alumina-related compounds by colloidal processing in high-magnetic field and sintering. J. Eur. Ceram. Soc. 28, 935 (2008).
62. Kharton, V.V., Marques, F.M.B., and Atkinson, A.: Transport properties of solid oxide electrolyte ceramics: A brief review. Solid State Ionics 174, 135 (2004).
63. Kendall, K.R., Navas, C., Thomas, J.K., and Zur Loye, H-C.: Recent developments in oxide ion conductors: Aurivillius phases. Chem. Mater. 8, 642 (1996).
64. Mahato, N., Banerjee, A., Gupta, A., Omar, S., and Balani, K.: Progress in material selection for solid state oxide fuel cell technology: A review. Prog. Mater. Sci. 72, 141 (2015).
65. Malavasi, L., Fisher, C.A.J., and Islam, M.S.: Oxide-ion and proton conducting electrolyte materials for clean energy applications: Structural and mechanistic features. Chem. Soc. Rev. 39, 4370 (2010).
66. Fukuda, K., Asaka, T., Hara, S., Oyabu, M., Berghout, A., Béchade, E., Masson, O., Julien, I., and Thomas, P.: Crystal structure and oxide-ion conductivity along c-axis of Si-deficient apatite-type lanthanum silicate. Chem. Mater. 25, 2154 (2013).
67. Fukuda, K., Okabe, M., and Asaka, T.: Microtexture of c-axis-oriented polycrystalline lanthanum silicate oxyapatite formed by reactive diffusion. J. Am. Ceram. Soc. 99, 2816 (2016).
68. Medlin, D.L. and Snyder, G.J.: Interfaces in bulk thermoelectric materials: A review for current opinion in colloid and interface science. Curr. Opin. Colloid Interface Sci. 14, 226 (2009).
69. Ohta, H., Seo, W-S., and Koumoto, K.: Thermoelectric properties of homologous compounds in the ZnO–In2O3 system. J. Am. Ceram. Soc. 79, 2193 (1996).
70. Terasaki, I., Sasago, Y., and Uchinokura, K.: Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B: Condens. Matter Mater. Phys. 56, R12685 (1997).
71. Li, S., Funahashi, R., Matsubara, I., Ueno, K., and Yamada, H.: High temperature thermoelectric properties of oxide Ca9Co12O28 . J. Mater. Chem. 9, 1659 (1999).
72. J. Hejtmánek, M. Veverka, K. Knížek, H. Fujishiro, S. Hebert, Y. Klein, A. Maignan, C. Bellouard, and B. Lenoir: Cobaltites as Perspective Thermoelectrics, edited by J. Yang (Mater. Res. Soc. Symp. Proc. 886, Warrendale, PA, 2006) 1274-F01-07.1.
73. Itahara, H., Tajima, S., and Tani, T.: Synthesis of β-Co(OH)2 platelets by precipitation and hydrothermal methods. J. Ceram. Soc. Jpn. 110, 1048 (2002).
74. Koumoto, K., Funahashi, R., Guilmeau, E., Miyazaki, Y., Weidenkaff, A., Wang, Y., and Wan, C.: Thermoelectric ceramics for energy harvesting. J. Am. Ceram. Soc. 96(1), 1 (2013).
75. Zhou, Y., Matsubara, I., Horii, S., Takeuchi, T., Funahashi, R., Shikano, M., Shimoyama, J., Kishio, K., Shin, W., Izu, N., and Murayama, N.: Thermoelectric properties of highly grain-aligned and densified Co-based oxide ceramics. J. Appl. Phys. 93, 2653 (2003).
76. Funahashi, R., Urata, S., Sano, T., and Kitawaki, M.: Enhancement of thermoelectric figure of merit by incorporation of large single crystals in Ca3Co4O9 bulk materials. J. Mater. Res. 18, 1646 (2003).
77. Prevel, M., Reddy, E.S., Perez, O., Kobayashi, W., Terasaki, I., Goupil, C., and Noudem, J.G.: Thermoelectric properties of sintered and textured Nd-Substituted Ca3Co4O9 ceramics. JJAP 46, 97 (2007).
78. Prevel, M., Lemonnier, S., Klein, Y., Hebert, S., Chateigner, D., Ouladdiaf, B., and Noudem, J.G.: Textured Ca3Co4O9 thermoelectric oxides by thermoforging process. J. Appl. Phys. 98, 093706 (2005).
79. Guilmeau, E., Funahashi, R., Mikami, M., Chong, K., and Chateigner, D.: Thermoelectric properties-texture relationship in highly oriented Ca3Co4O9 composited. Appl. Phys. Lett. 85, 1490 (2004).
80. Liu, Y.H., Lin, Y.H., Shi, Z., Nan, C.W., and Shen, Z.J.: Preparation of Ca3Co4O9 and improvement of its thermoelectric properties by spark plasma sintering. J. Am. Ceram. Soc. 88, 1337 (2005).
81. Liu, H.Q., Song, Y., Zhang, S.N., Zhao, X.B., and Wang, F.R.: Thermoelectric properties of Ca3−x Y x Co4O9+δ ceramics. J. Phys. Chem. Solids 70, 600 (2009).
82. Noudem, J.G., Kenfaui, D., Chateigner, D., and Gomina, M.: Granular and lamellar thermoelectric oxides consolidated by spark plasma sintering. J. Electron. Mater. 40, 1100 (2011).
83. Itahara, H., Sugiyama, J., and Tani, T.: Enhancement of electrical conductivity in thermoelectric [Ca2CoO3]0.62[CoO2] ceramics by texture improvement. Jpn. J. Appl. Phys. 43, 5134 (2004).
84. Lee, S., Wilke, R.H.T., Trolier-McKinstry, S., Zhang, S., and Randall, C.A.: Sr x Ba1−x Nb2O6−δ ferroelectric-thermoelectrics: Crystal anisotropy, conduction mechanism, and power factor. Appl. Phys. Lett. 96, 031910 (2010).
85. Lee, S., Dursun, S., Duran, C., and Randall, C.A.: Thermoelectric power factor enhancement of textured ferroelectric Sr x Ba1−x Nb2O6−δ . J. Mater. Res. 26(1), 26 (2011).
86. Miwa, Y., Kawada, S., Kimura, M., Omiya, S., Kubodera, N., Ando, A., Suzuki, T.S., Uchikoshi, T., and Sakka, Y.: Processing and enhanced piezoelectric properties of highly oriented compositionally modified Pb(Zr,Ti)O3 ceramics fabricated by magnetic alignment. Appl. Phys. Express 8, 041501 (2015).
87. Sabolsky, E.M., Trolier-McKinstry, S., and Messing, G.L.: Dielectric and piezoelectric properties of 〈001〉 fiber-textured 0.675 Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 ceramics. J. Appl. Phys. 93, 4072 (2003).
88. Richter, T., Denneler, S., Schuh, C., Suvaci, E., and Moos, R.: Textured PMN–PT and PMN–PZT. J. Am. Ceram. Soc. 91, 929 (2008).
89. Yan, Y., Wang, Y.U., and Priya, S.: Electromechanical behavior of [001]-textured Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics. Appl. Phys. Lett. 100, 192950 (2012).
90. Brosnan, K.H.: Processing, properties, and application of textured 0.72Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 ceramics. Ph.D thesis, Pennsylvania State University, 2007.
91. Amorin, H., Ursic, H., Ramos, P., Holc, J., Moreno, R., Chateigner, D., Ricote, J., and Alguero, M.: Pb(Mg1/3Nb2/3)O3–PbTiO3 textured ceramics with high piezoelectric response by a novel templated grain growth approach. J. Am. Ceram. Soc. 97, 420 (2014).
92. Poterala, S.F., Trolier-McKinstry, S., Meyer, R.J. Jr., and Messing, G.L.: Processing, texture quality, and piezoelectric properties of 〈001〉C textured (1 − x)Pb(Mg1/3Nb2/3)TiO3xPbTiO3 ceramics. J. Appl. Phys. 110, 14105 (2011).
93. Yan, Y., Yang, L., Zhou, Y., Cho, K.H., Heo, J.S., and Priya, S.: Enhanced temperature stability in 〈111〉textured tetragonal Pb(Mg1/3Nb2/3)O3–PbTiO3 piezoelectric ceramics. J. Appl. Phys. 118, 104101 (2015).
94. Yan, Y., Zhou, J.E., Maurya, D., Wang, Y.U., and Priya, S.: Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material. Nat. Commun. 7, 1 (2016).
95. Chang, Y., Wu, J., Sun, Y., Zhang, S., Wang, X., Yang, B., Messing, G.L., and Cao, W.: Enhanced electromechanical properties and phase transition temperatures in [001] textured Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary ceramics. Appl. Phys. Lett. 107, 82902 (2015).
96. Wei, D., Yuan, Q., Zhang, G., and Wang, H.: Templated grain growth and piezoelectric properties of 〈001〉-textured PIN–PMN–PT ceramics. J. Mater. Res. 30, 2144 (2015).
97. Duran, C., Dursun, S., and Akça, E.: High strain, 〈001〉-textured Pb(Mg1/3Nb2/3)O3–Pb(Yb1/2Nb1/2)O3–PbTiO3 piezoelectric ceramics. Scr. Mater. 113, 14 (2016).
98. Yan, Y., Cho, K., Maurya, D., Kumar, A., Kalinin, S., Armen, K., and Priya, S.: Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3–PbZrO3–PbTiO3 piezoelectric ceramics. Appl. Phys. Lett. 102, 42903 (2013).
99. Yan, Y. and Priya, S.: Strong piezoelectric anisotropy d 15/d 33 in 〈111〉 textured Pb(Mg1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics. Appl. Phys. Lett. 107, 82909 (2015).
100. Zhang, S.J., Luo, J., Hackenberger, W., Sherlock, N.P., Meyer, R.J. Jr., and Shrout, T.R.: Electromechanical characterization of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)–PbTiO3 crystals as a function of crystallographic orientation and temperature. J. Appl. Phys. 105, 104506 (2009).
101. Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., and Nakamura, M.: Lead-free piezoceramics. Nature 432, 84 (2004).
102. Yang, Z.P., Chang, Y.F., and Wei, L.L.: Phase transitional behavior and electrical properties of lead-free (K0.44Na0.52Li0.04)(Nb0.96−x Ta x Sb0.04)O3 piezoelectric ceramics. Appl. Phys. Lett. 90, 042911 (2007).
103. Wu, J.G. and Xiao, D.Q.: Compositional dependence of phase structure and electrical properties in (K0.42Na0.58)NbO3–LiSbO3 lead-free ceramics. J. Appl. Phys. 102, 114113 (2007).
104. Fuentes, J., Portelles, J., Durruthy-Rodriguez, M.D., H’Mok, H., Raymond, O., Heiras, J., Cruz, M.P., and Siqueiros, J.M.: Dielectric and piezoelectric properties of the KNN ceramic compound doped with Li, La and Sb. Appl. Phys. A 117, 709 (2015).
105. Wei, Y.B., Wu, Z., Jia, Y.M., Wu, J., Shen, Y.C., and Luo, H.S.: Dual-enhancement of ferro-/piezoelectric and photoluminescent performance in Pr3+ doped (K0.5Na0.5)NbO3 lead-free ceramics. Appl. Phys. Lett. 105, 042902 (2014).
106. Chang, Y., Poterala, S.F., Yang, Z., Trolier-McKinstry, S., and Messing, G.L.: 〈001〉 textured (K0.5Na0.5)(Nb0.97Sb0.03)O3 piezoelectric ceramics with high electromechanical coupling over a broad temperature range. Appl. Phys. Lett. 95, 232905 (2009).
107. Chang, Y., Poterala, S., Yang, Z., and Messing, G.L.: Enhanced electromechanical properties and temperature stability of textured (K0.5Na0.5)NbO3-based piezoelectric ceramics. J. Am. Ceram. Soc. 94, 2494 (2011).
108. Takao, H., Saito, Y., Aoki, Y., and Horibuchi, K.: Microstructural evolution of crystalline-oriented (K0.5Na0.5)NbO3 piezoelectric ceramics with a pintering aid of CuO. J. Am. Ceram. Soc. 89, 1951 (2006).
109. Hussain, A., Kim, J.S., Song, T.K., Kim, M.H., Kim, W.J., and Kim, S.S.: Fabrication of textured KNNT ceramics by reactive template grain growth using NN templates. Curr. Appl. Phys. 13, 1055 (2013).
110. Saito, Y. and Takao, H.: Synthesis of polycrystalline platelike KNbO3 particles by the topochemical micro-crystal conversion method and fabrication of grain-oriented (K0.5Na0.5)NbO3 ceramics. J. Eur. Ceram. Soc. 27, 4085 (2007).
111. Haugen, A.B., Henning, G., Madaro, F., Morozov, M.I., Tutuncu, G., Jones, J.L., Grande, T., and Einarsrud, M.: Piezoelectric K0.5Na0.5NbO3 ceramics textured using needlelike K0.5Na0.5NbO3 templates. J. Am. Ceram. Soc. 97, 3818 (2014).
112. Li, Y., Hui, C., Wu, M., Li, Y., and Wang, Y.: Textured (K0.5Na0.5)NbO3 ceramics prepared by screen-printing multilayer grain growth technique. Ceram. Int. 38S, S283 (2012).
113. Tutuncu, G., Chang, Y., Poterala, S., Jones, J.L., and Messing, G.L.: In situ observations of template grain growth in (Na0.5K0.5)0.98Li0.02NbO3 piezoceramics: Texture development and template-matrix interactions. J. Am. Ceram. Soc. 95, 2653 (2012).
114. Gao, F., Hong, R.Z., Li, J.J., Yao, Y.H., and Tian, C.S.: Effect of different templates on microstructure of textured Na0.5Bi0.5TiO3–BaTiO3 ceramics with RTGG method. J. Eur. Ceram. Soc. 28, 2063 (2008).
115. Bai, W., Hao, J., Fu, F., Li, W., Shen, B., and Zhai, J.: Structure and strain behavior of 〈001〉 textured BNT-based ceramics by template grain growth. Mater. Lett. 97, 137 (2013).
116. Deng, M., Li, X., Zhao, Z., Li, T., Dai, Y., and Ji, H.: Crystallographic textured evolution in 0.85Na0.5Bi0.5TiO3–0.04BaTiO3–0.11K0.5Bi0.5TiO3 ceramics prepared by reactive-templated grain growth method. J. Mater. Sci. Mater. Electron. 25, 1873 (2014).
117. Gao, F., Liu, X., Zhang, C., Cheng, L., and Tian, C.: Fabrication and electrical properties of textured (Na,K)0.5Bi0.5TiO3 ceramics by reactive-templated grain growth. Ceram. Int. 34, 403 (2008).
118. Hu, D., Mori, K., Kong, X., Shinagawa, K., Wada, S., and Feng, Q.: Fabrication of [100]-oriented bismuth sodium titanate ceramics with small grain size and high density for piezoelectric materials. J. Eur. Ceram. Soc. 34, 1169 (2014).
119. Zou, H., Sui, Y., Zhu, X., Liu, B., Xue, J., and Zhang, J.: Texture development and enhanced electromechanical properties in 〈001〉-textured BNT-based materials. Mater. Lett. 184, 139 (2016).
120. Shoji, T., Yoshida, Y., and Kimura, T.: Mechanism of texture development in Bi0.5(Na,K)0.5TiO3 templated by platelike Al2O3 particles. J. Am. Ceram. Soc. 91, 3883 (2008).
121. Shoji, T., Fuse, K., and Kimura, T.: Mechanism of texture development in Bi0.5(Na,K)0.5TiO3 prepared by the templated grain growth process. J. Am. Ceram. Soc. 92, S140 (2009).
122. Jing, X., Li, Y., Yang, Q., Zeng, J., and Yin, Q.: Influence of different templates on the textured Bi0.5(Na1−x K x )0.5TiO3 piezoelectric ceramics by the reactive templated grain growth process. Ceram. Int. 30, 1889 (2004).
123. Maurya, D., Zhou, Y., Yan, Y., and Priya, S.: Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3–BaTiO3 ceramics with giant piezoelectric response. J. Mater. Chem. C 1, 2102 (2013).
124. Maurya, D., Zhou, Y., Wang, Y., Yan, Y.K., Li, J.F., Viehland, D., and Priya, S.: Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3–BaTiO3–Na0.5Bi0.5TiO3 piezoelectric materials. Sci. Rep. 5, 8595 (2014).
125. Zhang, H., Xu, P., Patterson, E., Zang, J., Jiang, S., and Rödel, J.: Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2)TiO3-based lead-free incipient piezoceramics. J. Eur. Ceram. Soc. 35, 2501 (2015).
126. Ma, S., Zhang, Y., Liu, Z., Dai, X., and Huang, J.: Preparation and enhanced electric-field-induced strain of textured 91BNT–6BT–3KNN lead-free piezoceramics by TGG method. J. Mater. Sci. Mater. Electron. 27, 3076 (2016).
127. Vriami, D., Damjanovic, D., Vleugels, J., and Van Der Biest, O.: Textured BaTiO3 by templated grain growth and electrophoretic deposition. J. Mater. Sci. 50, 7896 (2015).
128. Fu, F., Shen, B., Xu, Z., and Zhai, J.: Electric properties of BaTiO3 lead-free textured piezoelectric thick film by screen printing method. J. Electroceram. 33, 208 (2014).
129. Wada, S., Takeda, K., Muraishi, T., Kakemoto, H., Tsurumi, T., and Kimura, T.: Preparation of [110] grain oriented barium titanate ceramics by templated grain growth method and their piezoelectric properties. Jpn. J. Appl. Phys. 46, 739 (2007).
130. Kamlo, A.N., Geffroy, P.M., Pham-Thi, M., and Marchet, P.: {111}-Textured BaTiO3 ceramics elaborated by templated grain growth using NaNbO3 templates. Mater. Lett. 113, 149 (2013).
131. Liu, W. and Ren, X.: Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009).
132. Sato, T. and Kimura, T.: Preparation of 〈111〉 textured BaTiO3 ceramics by templated grain growth method using novel template particles. Ceram. Int. 34, 757 (2008).
133. Ye, S.K., Fuh, J.Y.H., and Lu, L.: Structure and electrical properties of 〈001〉 textured (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free piezoelectric ceramics. Appl. Phys. Lett. 100, 252906 (2012).
134. Sabolsky, E.M., Maldonado, L., Seabaugh, M.M., and Swartz, S.L.: Textured-Ba(Zr,Ti)O3 piezoelectric ceramics fabricated by templated grain growth (TGG). J. Electroceram. 25, 77 (2010).
135. Bai, W., Chen, D., Li, P., Shen, B., Zhai, J., and Ji, Z.: Enhanced electromechanical properties in 〈001〉-textured (Ba0.85Ca0.15) (Zr0.1Ti0.9)O3 lead-free piezoceramics. Ceram. Int. 42, 3429 (2016).
136. Zhukov, S., Genenko, Y.A., Koruza, J., Schultheiß, J., Seggern, H.v., Sakamoto, W., Ichikawa, H., Murata, T., Hayashi, K., and Yogo, T.: Effect of texturing on polarization switching dynamics in ferroelectric ceramics. Appl. Phys. Lett. 108, 012907 (2016).
137. Schultheiß, J., Clemens, O., Zhukov, S., Seggern, H.v., Sakamoto, W., and Koruza, J.: Effect of degree of crystallographic texture on ferro- and piezoelectric properties of Ba0.85Ca0.15TiO3 piezoceramics. J. Am. Ceram. Soc. (2017). doi: 10.1111/jace.14749.
138. Ye, S., Fuh, J., Lu, L., Chang, Y-I., and Yang, J-R.: Structure and properties of hot-pressed lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 piezoelectric ceramics. RSC Adv. 3, 20693 (2013).
139. Endo, S., Nagata, H., and Takenaka, T.: Fabrication and high power piezoelectric characteristics of textured (Sr0.7Ca0.3)2Bi4Ti5O18 . Jpn. J. Appl. Phys. 53, 3 (2014).
140. Zhang, H., Yan, H., Zhang, X., Reece, M.J., Liu, J., Shen, Z., Kan, Y., and Wang, P.: The effect of texture on the properties of Bi3.15Nd0.85Ti3O12 ceramics prepared by spark plasma sintering. Mater. Sci. Eng., A 475, 92 (2008).
141. Kimura, T., Sakuma, Y., and Murata, M.: Texture development in piezoelectric ceramics by templated grain growth using heterotemplates. J. Eur. Ceram. Soc. 25, 2227 (2005).
142. Kimura, M., Ogawa, H., Sawada, T., Shiratsuyu, K., Wada, N., and Ando, A.: Piezoelectric properties in textured ceramics of bismuth layer-structured ferroelectrics. J. Electroceram. 21, 55 (2008).
143. Chen, H., Shen, B., Xu, J., and Zhai, J.: Textured Ca0.85(Li,Ce)0.15Bi4Ti4O15 ceramics for high temperature piezoelectric applications. Mater. Res. Bull. 47, 2530 (2012).
144. Chen, H. and Zhai, J.: Enhanced piezoelectric properties of CaBi2Nb2O9 with Eu modification and templated grain growth. Key Eng. Mater. 515, 1367 (2012).
145. Hao, H., Liu, H., and Ouyang, S.: Processing and property of textured lead-free SrTi4Bi4O15 piezoelectric ceramics. J. Electroceram. 21, 255 (2008).
146. Li, T., Li, X., Zhao, Z., Ji, H., and Dai, Y.: Structures and electrical properties of textured Ca0.85(LiCe)0.075Bi4Ti4O15 ceramics prepared by the reactive templated grain growth. Integr. Ferroelectr. 162, 1 (2015).
147. Liu, J., Shen, Z., Nygren, M., Kan, Y., and Wang, P.: SPS processing of bismuth-layer structured ferroelectric ceramics yielding highly textured microstructures. J. Eur. Ceram. Soc. 26, 3233 (2006).
148. Bao, Q.X., Zhu, L.H., Huang, Q.W., and Xv, J.: Preparation of textured Ba2NaNb5O15 ceramics by templated grain growth. Ceram. Int. 32(7), 745 (2006).
149. Dursun, S., Mensur-Alkoy, E., and Alkoy, S.: Fabrication of textured lead-free strontium barium niobate (SBN61) bulk ceramics and their electrical properties. J. Eur. Ceram. Soc. 36, 2479 (2016).
150. Chang, Y., Lee, S., Poterala, S., Randall, C.A., and Messing, G.L.: A critical evaluation of reactive templated grain growth (RTGG) mechanisms in highly [001] textured Sr0.61Ba0.39Nb2O6 ferroelectric-thermoelectrics. J. Mater. Res. 26(24), 3044 (2011).
151. Wei, L., Chao, X., Han, X., and Yang, Z.: Structure and electrical properties of textured Sr1.85Ca0.15NaNb5O15 ceramics prepared by reactive templated grain growth. Mater. Res. Bull. 52, 65 (2014).
152. Liu, L. and Hou, Z.: Fabrication of grain-oriented KSr2Nb5O15 ceramics by a brush technique. Mater. Lett. 186, 105 (2017).
153. Alkoy, S. and Dursun, S.: Processing and properties of textured potassium strontium niobate (KSr2Nb5O15) ceramic fibers—Texture development. J. Am. Ceram. Soc. 95(3), 937 (2012).
154. Alkoy, S. and Dursun, S.: Processing and properties of textured potassium strontium niobate (KSr2Nb5O15) ceramic fibers-effect of texture on the electrical properties. IEEE Trans. Ultrason., Ferroelectr., Freq. Control 60, 2044 (2013).
155. Tanaka, S., Takahashi, T., and Furushima, R.: Fabrication of c-axis-oriented potassium strontium niobate (KSr2Nb5O15) ceramics by a rotating magnetic field and electrical property. J. Ceram. Soc. Japan 118, 722 (2010).
156. Apetz, R. and van Bruggen, M.P.B.: Transparent alumina: A light-scattering model. J. Am. Ceram. Soc. 86, 480 (2003).
157. Liu, P., Yi, H., Zhou, G., Zhang, J., and Wang, S.: HIP and pressureless sintering of transparent alumina shaped by magnetic field assisted slip casting. Opt. Mater. Exp. 5, 441 (2015).
158. Pringuet, A., Takahashi, T., Baba, S., Kamo, Y., Kato, Z., Uematsu, K., and Tanaka, S.: Fabrication of transparent grain-oriented polycrystalline alumina by colloidal processing. J. Am. Ceram. Soc. 99, 3217 (2016).
159. Tanaka, S., Takahashi, T., and Uematsu, K.: Fabrication of transparent crystal-oriented polycrystalline strontium barium niobate ceramics for electro-optical application. J. Eur. Ceram. Soc. 34, 3723 (2014).
160. Akiyama, J., Sato, Y., and Taira, T.: Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics. Appl. Phys. Exp. 4, 002703 (2011).
161. Y. Sato, J. Akiyama, and T. Taira: Micro-domain controlled anisotropic laser ceramics assisted by rare-earth trivalent, in Pacific Rim Laser Damage 2011: Optical Materials for High Power Lasers, edited by J. Shao, K. Sugioka, and C.J. Stolz (Proc. of SPIE 8206, Bellingham, WA, 2012) p. 82061T-1.
162. Sato, Y., Arzakantsyan, M., Akiyama, J., and Taira, T.: Anisotropic Yb:FAP laser ceramics by micro-domain control. Opt. Mater. Exp. 4, 214969 (2006).
163. Shoji, I., Sato, Y., Kurimura, S., Lupei, V., Taira, T., Ikesue, A., and Yoshida, K.: Thermal-birefringence-induced depolarization in Nd:YAG ceramics. Opt. Lett. 27, 234 (2002).
164. Shoji, I. and Taira, T.: Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal. Appl. Phys. Lett. 80, 3048 (2002).
165. Arakawa, S., Kadoura, H., Uyama, T., Takatori, K., Takeda, Y., and Tani, T.: Formation of preferentially oriented Y3Al5O12 film on a reactive sapphire substrate: Phase and texture transitions from Y2O3 . J. Eur. Ceram. Soc. 36, 663 (2016).
166. Watari, K.: High thermal conductivity non-oxide ceramics. J. Ceram. Soc. Jpn. 109, S7 (2001).
167. Hirosaki, N., Ogata, S., Kocer, C., Kitagawa, H., and Nakamura, Y.: Molecular dynamics calculation of the ideal thermal conductivity of single-crystal. Phys. Rev. B: Condens. Matter Mater. Phys. 65, 134110 (2002).
168. Suzuki, T.S. and Sakka, Y.: Preparation of oriented bulk 5 wt% Y2O3–AlN ceramics by slip casting in a high magnetic field and sintering. Scr. Mater. 52, 583 (2005).
169. Suzuki, T.S., Uchikoshi, T., and Sakka, Y.: Effect of sintering additive on crystallographic orientation in AlN prepared by slip casting in a strong magnetic field. J. Eur. Ceram. Soc. 29, 2627 (2009).
170. Li, B., Pottier, L., Roger, J.P., Fournier, D., Watari, K., and Hirao, K.: Measuring the anisotropic thermal diffusivity of silicon nitride grains by thermoreflectance microscopy. J. Eur. Ceram. Soc. 19, 1631 (1999).
171. Zhu, X., Suzuki, T.S., Uchikoshi, T., and Sakka, Y.: Texturing behavior in sintered reaction-bonded silicon nitride via strong magnetic field alignment. J. Eur. Ceram. Soc. 28, 929 (2008).
172. Zhu, X.W., Sakka, Y., Zhou, Y., Hirao, K., and Itatani, K.: A strategy for fabricating textured silicon nitride with enhanced thermal conductivity. J. Eur. Ceram. Soc. 34, 2585 (2014).
173. Hirao, K., Watari, K., Brito, M.E., Toriyama, M., and Kanzaki, S.: High thermal conductivity in silicon nitride with anisotropic microstructure. J. Am. Ceram. Soc. 79, 2485 (1996).
174. Akimune, Y., Munakata, F., Matsuo, K., Hirosaki, N., Okamoto, Y., and Misono, K.: Raman spectroscopy analysis of structural defects in hot isostatically pressed silicon nitride. J. Ceram. Soc. Jpn. 107, 339 (1999).
175. McColm: Ceramic Hardness, 1st ed. (Plenum Press, New York, 1990).
176. Carisey, T., Levin, I., and Brandon, D.G.: Microstructure and mechanical properties of textured Al2O3 . J. Eur. Ceram. Soc. 15, 283 (1995).
177. Lee, S., Lee, Y., Kim, Y., Xie, R., Mitomo, M., and Zhan, G.: Mechanical properties of hot-forged silicon carbide ceramics. Scr. Mater. 52, 153 (2005).
178. Vedula, V.R., Glass, S.J., Saylor, D.M., Rohrer, G.S., Carter, W.C., Langer, S.A., and Fuller, E.R. Jr.: Residual stress predictions in polycrystalline alumina. J. Am. Ceram. Soc. 84, 2947 (2001).
179. Salem, J.A., Shannon, J.L., and Bradt, R.C.: The effect of texture on the crack growth resistance of alumina. Presented at the 89th Annual Meeting of the American Ceramic Society (1987). Available at: (accessed 20 December 2016).
180. Zhang, L., Vleugels, J., Darchuk, L., and Van der Biest, O.: Magnetic field oriented tetragonal zirconia with anisotropic toughness. J. Eur. Ceram. Soc. 31, 1405 (2011).
181. Pavlacka, R., Bermejo, R., Chang, Y., Green, D.J., and Messing, G.L.: Fracture behavior of layered alumina microstructural composites with highly textured layers. J. Am. Ceram. Soc. 96, 1577 (2013).
182. Chang, Y., Bermejo, R., and Messing, G.L.: Improved fracture behavior of alumina microstructural composites with highly textured compressive layers. J. Am. Ceram. Soc. 97, 3643 (2014).
183. He, M-Y. and Hutchinson, J.W.: Crack deflection at an interface between dissimilar elastic materials. Int. J. Solids Struct. 25, 1053 (1989).
184. Nakamura, M., Hirao, K., Yamauchi, Y., and Kanzaki, S.: Tribological properties of unidirectionally aligned silicon nitride. J. Am. Ceram. Soc. 84, 2579 (2001).
185. Wu, W., Sakka, Y., and Suzuki, T.S.: Microstructure and anisotropic properties of textured ZrB2 and ZrB2–MoSi2 ceramics prepared by strong magnetic field alignment. Int. J. Appl. Ceram. Technol. 11, 218 (2014).
186. Zhu, X. and Sakka, Y.: Textured silicon nitride: Processing and anisotropic properties. Sci. Technol. Adv. Mater. 9, 1 (2008).
187. Pavlacka, R. and Messing, G.: Processing and mechanical response of highly textured Al2O3 . J. Eur. Ceram. Soc. 30, 2917 (2010).
188. Sun, Z.M.: Progress in research and development on MAX phases: A family of layered ternary compounds. Int. Mater. Rev. 56, 143 (2011).
189. Shamma, M., Caspi, E.N., Anasori, B., Clausen, B., Brown, D.W., Vogel, S.C., Presser, V., Amini, S., Yeheskel, O., and Barsoum, M.W.: In situ neutron diffraction evidence for fully reversible dislocation motion in highly textured polycrystalline Ti2AlC samples. Acta Mater. 98, 51 (2015).
190. Hu, C., Sakka, Y., Tanaka, H., Nishimura, T., and Grasso, S.: Fabrication of textured Nb4AlC3 ceramic by slip casting in a strong magnetic field and spark plasma sintering. J. Am. Ceram. Soc. 94, 410 (2011).
191. Hu, C., Sakka, Y., Nishimura, T., Guo, S., Grasso, S., and Tanaka, H.: Physical and mechanical properties of highly textured polycrystalline Nb4AlC3 ceramic. Sci. Technol. Adv. Mater. 12, 044603 (2011).
192. Hu, C., Sakka, Y., Grasso, S., Nishimura, T., Guo, S., and Tanaka, H.: Shell-like nanolayered Nb4AlC3 ceramic with high strength and toughness. Scr. Mater. 64, 765 (2011).
193. Hu, C., Sakka, Y., Grasso, S., Suzuki, T., and Tanaka, H.: Tailoring Ti3SiC2 ceramic via a strong magnetic field alignment method followed by spark plasma sintering. J. Am. Ceram. Soc. 94, 742 (2011).
194. Sato, K., Mishra, M., Hirano, H., Suzuki, T.S., and Sakka, Y.: Fabrication of textured Ti3SiC2 ceramic by slip casting in a strong magnetic field and pressureless sintering. J. Ceram. Soc. Jpn. 122, 817 (2014).
195. Zhang, H.B., Hu, C.F., Sato, K., Grasso, S., Estili, M., Guo, S.Q., Morita, K., Yoshida, H., Nishimura, T., Suzuki, T.S., Barsoum, M.W., Kim, B.N., and Sakka, Y.: Tailoring Ti3AlC2 ceramic with high anisotropic physical and mechanical properties. J. Eur. Ceram. Soc. 393, 35 (2015).
196. Mishra, M., Sakka, Y., Hu, C., Suzuki, T.S., Uchikoshi, T., and Besra, L.: Textured Ti3SiC2 by EPD in a strong magnetic field. Key Eng. Mater. 507, 15 (2012).
197. Mizuno, Y., Sato, K., Mrinalini, M., Suzuki, T.S., and Sakka, Y.: Fabrication of textured Ti3AlC2 by spark plasma sintering and their anisotropic mechanical properties. J. Ceram. Soc. Jpn. 121, 366 (2013).
198. Lapauw, T., Vanmeensel, K., Lambrinou, K., and Vleugels, J.: A new method to texture dense M n+1AX n ceramics by spark plasma deformation. Scr. Mater. 111, 98 (2016).
199. Aleshin, V.I., Raevskii, I.P., and Sitalo, E.I.: Electromechanical properties of a textured ceramic material in the (1 − x)PMN–xPT system: Simulation based on the effective-medium method. Phys. Solid State 50, 2150 (2008).
200. Pham-Thi, M., Hemery, H., and Dammak, H.: X-ray investigation of highly oriented (1 − x)PbMg1/3Nb2/3O3–(x)PbTiO3 ceramics. J. Eur. Ceram. Soc. 25, 2433 (2005).
201. Poterala, S.F., Meyer, R.J., and Messing, G.L.: Low-field dynamic magnetic alignment and templated grain growth of diamagnetic PMN–PT ceramics. J. Mater. Res. 28, 2961 (2013).
202. Jones, J.L., Slamovich, E.B., and Bowman, K.J.: Critical evaluation of the Lotgering degree of orientation texture indicator. J. Mater. Res. 19, 3414 (2004).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Messing supplementary material S1
Supplementary Table

 Word (26 KB)
26 KB
Supplementary materials

Messing supplementary material S2
Messing supplementary material

 Word (26 KB)
26 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed