Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-15T13:21:42.925Z Has data issue: false hasContentIssue false

Theory of the charged cluster formation in the low pressure synthesis of diamond: Part I. Charge-induced nucleation

Published online by Cambridge University Press:  31 January 2011

Hyun M. Jang
Affiliation:
Department of Materials Science and Engineering, and Laboratory for Physics/Chemistry of Dielectric Materials, Pohang University of Science and Technology (POSTECH), Pohang 790–784, Republic of Korea
Nong M. Hwang
Affiliation:
Korea Research Institute of Standards and Science, P.O. Box 102, Daedok Science Town, Daejon 305–600, Republic of Korea
Get access

Abstract

Based on several experimental observations, Hwang et al. recently proposed “the charged cluster model” [J. Cryst. Growth, 162, 55–68 (1996)] to disentangle the “puzzling thermodynamic paradox” encountered in the gas-activated chemical vapor deposition (CVD) of diamond. Many unusual phenomena observed in the CVD diamond process can be successfully approached by the charged cluster model. However, there are a couple of important subjects still unsolved quantitatively. The first question is connected with the main driving force for this unusual nucleation in the gas phase. The second issue is related to the difference in the thermodynamic stability between graphite and diamond for a nanometer-sized cluster during the growth. In this study, we have theoretically examined the thermodynamic driving forces for the charge-induced nucleation, in general, and have applied this idea to the nucleation of the charged carbon-atom cluster. It was shown that the short-range ion-induced dipole interaction and the ion-solvation electrostatic effect (Born term) were mainly responsible for this unusual nucleation in the gas phase. The theoretical analysis presented in this article is quite generic and, thus, can be applied to any process that involves the charge-induced nucleation.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Derjaguin, B. V. and Fedoseev, D. B., The Growth of Diamond and Graphite from the Gas Phase (Nauka, Moscow, USSR, 1977), Chap. 4.Google Scholar
2.Spitsyn, B. V., Bouilov, L. L., and Derjaguin, B. V., J. Cryst. Growth 52, 219 (1981).CrossRefGoogle Scholar
3.Matsumoto, S., Sato, Y., Tsutsumi, M., and Setaka, N., J. Mater. Sci. 17, 3106 (1982).CrossRefGoogle Scholar
4.Angus, J. C. and Hayman, C. C., Science 241, 913 (1988).CrossRefGoogle Scholar
5.Spear, K. E., J. Am. Ceram. Soc. 72, 171 (1989).Google Scholar
6.Yarbrough, W. A., J. Am. Ceram. Soc. 75, 3179 (1992).Google Scholar
7.Angus, J. C., Will, H. A., and Standko, W. S., J. Appl. Phys. 39, 2915 (1968).Google Scholar
8.Setaka, N., in Chemical Vapor Deposition 1987, Proc. 10th Int. Conf. on CVD, edited by Cullen, G. W. and Blocher, J., Jr. (The Electrochemical Society, Pennington, NJ, 1987), p. 1156.Google Scholar
9.Saito, Y., Sato, K., Tanaka, H., Fujita, K., and Matsuda, S., J. Mater. Sci. 23, 188 (1986).Google Scholar
10.Badzian, A. R., Badzian, T., Roy, R., Messier, R., and Spear, K. E., Mater. Res. Bull. 23, 531 (1988).CrossRefGoogle Scholar
11.Salvadori, M. C., Brewer, M. A., Ager, J. W., Krishnan, K. M., and Brown, I. G., J. Electrochem. Soc. 139, 558 (1992).CrossRefGoogle Scholar
12.Hwang, N. M., Hahn, J. H., and Yoon, D. Y., J. Cryst. Growth 160, 87 (1996).CrossRefGoogle Scholar
13.Whittaker, A. G., Science 200, 763 (1978).CrossRefGoogle Scholar
14.Badziag, P., Verwoerd, W. S., Ellis, W. P., and Greiner, N. R., Nature 343, 244 (1990).Google Scholar
15.Hwang, N. M., Bahng, G. W., and Yoon, D. N., Diamond Relat. Mater. 1, 191 (1992).Google Scholar
16.O'Brien, E. F. and Robinson, G. W., J. Chem. Phys. 61, 1050 (1974).Google Scholar
17.Castleman, A. W., Jr., Holland, P. M., and Keesee, R. G., J. Chem. Phys. 68, 1760 (1978).CrossRefGoogle Scholar
18.Wilson, J. G., The Principles of Cloud-Chamber Technique (Cambridge Univ. Press, Cambridge, 1951), Chap. 1.Google Scholar
19.Peyrou, C., in Bubble and Spark Chambers, edited by Shutt, R. P. (Academic Press, Orlando, FL, 1967), Chap. 2.Google Scholar
20.Hwang, N. M., Hahn, J. H., and Yoon, D. Y., J. Cryst. Growth 162, 55 (1996).CrossRefGoogle Scholar
21.Choi, K., Kang, S. L., Jang, H. M., and Hwang, N. M., J. Cryst. Growth 172, 416 (1997).Google Scholar
22.Jang, H. M. and Hwang, N. M., J. Mater. Res. 13, 3536 (1998).Google Scholar
23.Wang, R. B., Sommer, M., and Smith, F. W., J. Cryst. Growth 119, 271 (1992).CrossRefGoogle Scholar
24.Hwang, N. M., J. Cryst. Growth 135, 165 (1994).Google Scholar
25.Bockris, J.O'M. and Reddy, A. K. N., Modern Electrochemistry (Plenum Press, New York, 1970), Vol. 1, Chap. 2.Google Scholar
26.CRC Handbook of Chemistry and Physics, 74th ed. (CRC Press, Boca Raton, FL, 1994).Google Scholar
27.Nieman, G. C. and Klabunde, K. J., “Clustering of Free Atoms and Particles: Polymerization and the Beginning of Film Growth,” in Thin Films from Free Atoms and Particles, edited by Klabunde, K. J. (Academic Press, Inc., Orlando, FL, 1985), Chap. 2.Google Scholar
28.Yang, S., Taylor, K. J., Craycraft, M. J., Conceicao, J., Pettiette, C. L., Cheshnovsky, O., and Smalley, R. E., Chem. Phys. Lett. 144, 431 (1988).CrossRefGoogle Scholar
29.Pitzer, K. S. and Clementi, E., J. Am. Ceram. Soc. 81, 4477 (1959).Google Scholar
30.Furstenau, N. and Hillenkamp, F., Intern. J. Mass Spectrom. Ion Phys. 37, 155 (1981).CrossRefGoogle Scholar
31.Heicklen, J., Colloid Formation and Growth: A Chemical Kinetic Approach (Academic Press, New York, 1976), Chap. VI.Google Scholar
32.Lee, N., Keesee, R. G., and Castleman, A. W., Jr., J. Colloid Interf. Sci. 75, 555 (1980).CrossRefGoogle Scholar
33.Thompson, J. J., Conduction of Electricity through Gases (Cambridge Univ. Press, 1906).Google Scholar