Skip to main content
×
Home
    • Aa
    • Aa

Thermal conductivity of tunable lamellar aluminum oxide/polymethyl methacrylate hybrid composites

  • Ran Chen (a1), Michel B. Johnson (a2), Kevin P. Plucknett (a3) and Mary Anne White (a4)
Abstract
Abstract

We prepared hybrid aluminum oxide (Al2O3)/polymethyl methacrylate (PMMA) composites with tunable lamellae, produced through a two-step synthetic method: fabrication of inorganic scaffolds via ice-templating, followed by organic infiltration polymerization as a substitute for the sublimed ice. The final lamellar hybrid products show anisotropic physical properties. The thermal conductivity in both principal directions was determined for three different samples as a function of temperature (∼3 K–300 K). Typical room temperature thermal conductivities are in the range of 0.5–2.5 W/(m K), depending on the composition and direction. Across the lamellae, the thermal conductivity is well modeled by a linear series of thermal resistors, and along the lamellae it is well represented by parallel thermal resistors of continuous slabs of PMMA and ∼200-μm long slabs of Al2O3, joined by PMMA. From the thermal conductivity perspective, the Al2O3/PMMA composite is a nacre mimic.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: Mary.Anne.White@dal.ca
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

2. R.A.S. Ferreira , P.S. Andre , and L.D. Carlos : Organic-inorganic hybrid materials towards passive and active architectures for the next generation of optical networks. Opt. Mater. 32(11), 13971409 (2010).

3. P. Kumar and V.V. Guliants : Periodic mesoporous organic-inorganic hybrid materials: Applications in membrane separations and adsorption. Microporous Mesoporous Mater. 132(1–2), 114 (2010).

4. K. Tsuru , S. Hayakawa , and A. Osaka : Cell proliferation and tissue compatibility of organic-inorganic hybrid materials. Key Eng. Mater. 377, 167180 (2008).

6. G.D. Combarieu , M. Morcrette , F. Millange , N. Guillou , J. Cabana , C.P. Grey , I. Margiolaki , G. Ferey , and J.M. Tarascon : Influence of benzoquinone sorption on the structure and electrochemical performance of the MIL-53(Fe) hybrid porous material in a lithium-ion battery. Chem. Mater. 21(8), 16021611 (2009).

7. C. Sanchez , H. Arribart , and M.M.G. Guille : Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat. Mater. 4, 277288 (2005).

9. H. Yamamoto , Y. Kojima , T. Okuyama , W.P. Abasolo , and J. Gril : Origin of the biomechanical properties of wood related to the fine structure of the multilayered cell wall. J. Biomech. Eng. 124, 432440 (2002).

10. L. Estevez , A. Kelarakis , Q.M. Gong , E.H. Da’as , and P.G. Emmanuel : Multifunctional graphene/platinum/nafion hybrids via ice templating. J. Am. Chem. Soc. 133, 61226125 (2011).

11. S. Nayar , A.K. Pramanick , A. Guha , B.K. Mahato , M. Gunjan , and A. Sinha : Biomimetic synthesis of hybrid nanocomposite scaffolds by freeze-thawing and freeze-drying. Bull. Mater. Sci. 31(3), 429432 (2008).

12. S. Deville , E. Saiz , R.K. Nalla , and A.P. Tomsia : Freezing as a path to build complex composites. Science 311, 515518 (2006).

13. Y-W. Moon , K-H. Shin , Y-H. Koh , W-Y. Choi , and H-E. Kim : Production of highly aligned porous alumina ceramics by extruding frozen alumina/camphene body. J. Eur. Ceram. Soc. 31, 19451950 (2011).

14. M.C. Gutierrez , M.L. Ferrer , and F. de Mon : Ice-templated materials: Sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chem. Mater. 20, 634648 (2008).

15. C. Suwanchawalit , A.J. Patil , R.K. Kumar , S. Wongnawa , and S. Mann : Fabrication of ice-templated macroporous TiO2-chitosan scaffolds for photocatalytic applications. J. Mater. Chem. 19, 84788483 (2009).

18. E. Munch , M.E. Launey , D.H. Alsem , E. Saiz , A.P. Tomsia , and R.O. Ritchie : Tough, bioinspired hybrid materials. Science 322, 15161520 (2008).

19. M.E. Launey , E. Munch , D.H. Alsem , H.B. Barth , E. Saiz , A.P. Tomsia , and R.O. Ritchie : Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Mater. 57, 29192932 (2009).

20. B-Z. Zhan , M.A. White , and M. Lumsden : Bonding of organic amino, vinyl, and acryl groups to nanometer-sized NaX zeolite crystal surfaces. Langmuir 19, 4210 (2003).

21. O. Maldonado : Pulse method for simultaneous measurement of electric thermopower and heat conductivity at low temperatures. Cryogenics 32, 912 (1992).

22. Z.J. Yin , S.Y. Tao , X.M. Zhou , and C.X. Ding : Evaluating microhardness of plasma sprayed Al2O3 coatings using vickers indentation. J. Phys. D: Appl. Phys. 40, 70907096 (2007).

23. S. Deville , E. Saiz , and A.P. Tomsia : Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 27, 54805489 (2006).

24. S. Deville : Freeze-casting of porous ceramics: A review of current achievements and issues. Adv. Eng. Mater. 10, 169 (2008).

25. H.F. Zhang , I. Hussain , M. Brust , M.F. Butler , S.P. Rannard , and A.I. Cooper : Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature 4, 787793 (2005).

26. K. Lu , C.S. Kessler , and R.M. Davis : Optimization of a nanoparticle suspension for freeze-casting. J. Am. Ceram. Soc. 89(8) 24592465 (2006).

27. C.D. Munro and K.P. Plucknett : Aqueous colloidal characterization and forming of multimodal barium titanate powders. J. Am. Ceram. Soc. 92, 25372543 (2009).

28. S. Deville , E. Maire , G. Bernard-Granger , A. Lasalle , A. Bogner , C. Gauthier , J. Leloup , and C. Guizard : Metastable and unstable cellular solidification of colloidal suspensions. Nat. Mater. 8(12), 966972 (2009).

29. B. Zhang and F.D. Blum : Thermogravimetric study of ultra thin PMMA films on silica: Effect of tacticity. Thermochim. Acta 396, 211217 (2003).

31. V. Ziv , H.D. Wagner , and S. Weiner : Microstructure-microhardness relations in parallel-fibered and lamellar bone. Bone 18(5), 417428 (1996).

34. D.G. Cahill , S-M. Lee , and T.I. Selinder : Thermal conductivity of κ-Al2O3 and α-Al2O3 wear-resistant coatings. J. Appl. Phys. 83(11), 57835786 (1998).

35. D. Chu , M. Touzelbaev , K.E. Goodson , S. Babin , and R.F. Pease : Thermal conductivity measurements of thin-film resist. J. Vac. Sci. Technol. B 19(6), 28742877 (2011).

37. C.P. Wong and R.S. Bollampally : Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer filled with ceramic particles for electronic packaging. J. Appl. Polym. Sci. 74, 33963403 (1999).

38. F. Hojo , H. Kagawa , and Y. Takezawa : Synthesis of a polymer composite with networked α-alumina fiber and evaluation of its thermal conductivity. J. Ceram. Soc. Jpn. 119(7), 601604 (2011).

39. D.C. Moreira , L.A. Sphaier , J.M.L. Reis , and L.C.S. Nunes : Experimental investigation of heat conduction in polyester-Al2O3 and polyester-CuO nanocomposites. Expt. Thermal Fluid Sci. 35, 14581462 (2011).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 17 *
Loading metrics...

Abstract views

Total abstract views: 93 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 28th June 2017. This data will be updated every 24 hours.