Skip to main content
×
Home

Thermal conductivity of tunable lamellar aluminum oxide/polymethyl methacrylate hybrid composites

  • Ran Chen (a1), Michel B. Johnson (a2), Kevin P. Plucknett (a3) and Mary Anne White (a4)
Abstract
Abstract

We prepared hybrid aluminum oxide (Al2O3)/polymethyl methacrylate (PMMA) composites with tunable lamellae, produced through a two-step synthetic method: fabrication of inorganic scaffolds via ice-templating, followed by organic infiltration polymerization as a substitute for the sublimed ice. The final lamellar hybrid products show anisotropic physical properties. The thermal conductivity in both principal directions was determined for three different samples as a function of temperature (∼3 K–300 K). Typical room temperature thermal conductivities are in the range of 0.5–2.5 W/(m K), depending on the composition and direction. Across the lamellae, the thermal conductivity is well modeled by a linear series of thermal resistors, and along the lamellae it is well represented by parallel thermal resistors of continuous slabs of PMMA and ∼200-μm long slabs of Al2O3, joined by PMMA. From the thermal conductivity perspective, the Al2O3/PMMA composite is a nacre mimic.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: Mary.Anne.White@dal.ca
References
Hide All
1.Maria V.R., Montserrat C., and Blanca G.: Medical applications of organic-inorganic hybrid materials within the field of silica-based bioceramics. Chem. Soc. Rev. 40(2), 596607 (2011).
2.Ferreira R.A.S., Andre P.S., and Carlos L.D.: Organic-inorganic hybrid materials towards passive and active architectures for the next generation of optical networks. Opt. Mater. 32(11), 13971409 (2010).
3.Kumar P. and Guliants V.V.: Periodic mesoporous organic-inorganic hybrid materials: Applications in membrane separations and adsorption. Microporous Mesoporous Mater. 132(1–2), 114 (2010).
4.Tsuru K., Hayakawa S., and Osaka A.: Cell proliferation and tissue compatibility of organic-inorganic hybrid materials. Key Eng. Mater. 377, 167180 (2008).
5.Schubert U.: Catalysts made of organic-inorganic hybrid materials. New J. Chem. 18(10), 10491058 (1994).
6.Combarieu G.D., Morcrette M., Millange F., Guillou N., Cabana J., Grey C.P., Margiolaki I., Ferey G., and Tarascon J.M.: Influence of benzoquinone sorption on the structure and electrochemical performance of the MIL-53(Fe) hybrid porous material in a lithium-ion battery. Chem. Mater. 21(8), 16021611 (2009).
7.Sanchez C., Arribart H., and Guille M.M.G.: Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat. Mater. 4, 277288 (2005).
8.Suchanek W. and Yoshimura M.: Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res. 13(1), 94117 (1998).
9.Yamamoto H., Kojima Y., Okuyama T., Abasolo W.P., and Gril J.: Origin of the biomechanical properties of wood related to the fine structure of the multilayered cell wall. J. Biomech. Eng. 124, 432440 (2002).
10.Estevez L., Kelarakis A., Gong Q.M., Da’as E.H., and Emmanuel P.G.: Multifunctional graphene/platinum/nafion hybrids via ice templating. J. Am. Chem. Soc. 133, 61226125 (2011).
11.Nayar S., Pramanick A.K., Guha A., Mahato B.K., Gunjan M., and Sinha A.: Biomimetic synthesis of hybrid nanocomposite scaffolds by freeze-thawing and freeze-drying. Bull. Mater. Sci. 31(3), 429432 (2008).
12.Deville S., Saiz E., Nalla R.K., and Tomsia A.P.: Freezing as a path to build complex composites. Science 311, 515518 (2006).
13.Moon Y-W., Shin K-H., Koh Y-H., Choi W-Y., and Kim H-E.: Production of highly aligned porous alumina ceramics by extruding frozen alumina/camphene body. J. Eur. Ceram. Soc. 31, 19451950 (2011).
14.Gutierrez M.C., Ferrer M.L., and de Mon F.: Ice-templated materials: Sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chem. Mater. 20, 634648 (2008).
15.Suwanchawalit C., Patil A.J., Kumar R.K., Wongnawa S., and Mann S.: Fabrication of ice-templated macroporous TiO2-chitosan scaffolds for photocatalytic applications. J. Mater. Chem. 19, 84788483 (2009).
16.Jakubinek M.B., Samarasekera C., and White M.A.: Elephant ivory: A low thermal conductivity, high strength nanocomposite. J. Mater. Res. 21, 287292 (2006).
17.Tremblay L.P., Johnson M.B., Werner-Zwanziger U., and White M.A.: Relationship between thermal conductivity and structure of nacre from Haliotis fulgens. J. Mater. Res. 26(10), 12161224 (2011).
18.Munch E., Launey M.E., Alsem D.H., Saiz E., Tomsia A.P., and Ritchie R.O.: Tough, bioinspired hybrid materials. Science 322, 15161520 (2008).
19.Launey M.E., Munch E., Alsem D.H., Barth H.B., Saiz E., Tomsia A.P., and Ritchie R.O.: Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Mater. 57, 29192932 (2009).
20.Zhan B-Z., White M.A., and Lumsden M.: Bonding of organic amino, vinyl, and acryl groups to nanometer-sized NaX zeolite crystal surfaces. Langmuir 19, 4210 (2003).
21.Maldonado O.: Pulse method for simultaneous measurement of electric thermopower and heat conductivity at low temperatures. Cryogenics 32, 912 (1992).
22.Yin Z.J., Tao S.Y., Zhou X.M., and Ding C.X.: Evaluating microhardness of plasma sprayed Al2O3 coatings using vickers indentation. J. Phys. D: Appl. Phys. 40, 70907096 (2007).
23.Deville S., Saiz E., and Tomsia A.P.: Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 27, 54805489 (2006).
24.Deville S.: Freeze-casting of porous ceramics: A review of current achievements and issues. Adv. Eng. Mater. 10, 169 (2008).
25.Zhang H.F., Hussain I., Brust M., Butler M.F., Rannard S.P., and Cooper A.I.: Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature 4, 787793 (2005).
26.Lu K., Kessler C.S., and Davis R.M.: Optimization of a nanoparticle suspension for freeze-casting. J. Am. Ceram. Soc. 89(8) 24592465 (2006).
27.Munro C.D. and Plucknett K.P.: Aqueous colloidal characterization and forming of multimodal barium titanate powders. J. Am. Ceram. Soc. 92, 25372543 (2009).
28.Deville S., Maire E., Bernard-Granger G., Lasalle A., Bogner A., Gauthier C., Leloup J., and Guizard C.: Metastable and unstable cellular solidification of colloidal suspensions. Nat. Mater. 8(12), 966972 (2009).
29.Zhang B. and Blum F.D.: Thermogravimetric study of ultra thin PMMA films on silica: Effect of tacticity. Thermochim. Acta 396, 211217 (2003).
30.Yang W., Kashani N., Li X.W., Zhang G.P., and Meyers M.A.: Structural characterization and mechanical behavior of a bivalve shell (Saxidomus purpuratus). Mat. Sci. Eng. C 16 (2010).
31.Ziv V., Wagner H.D., and Weiner S.: Microstructure-microhardness relations in parallel-fibered and lamellar bone. Bone 18(5), 417428 (1996).
32.Sachs C., Fabritius H., and Raabe D.: Hardness and elastic properties of dehydrated cuticle from the lobster Homarus americanus obtained by nanoindentation. J. Mater. Res. 21(8), 19871995 (2006).
33.White M.A.: Physical Properties of Materials (CRC Press, Boca Raton, FL, 2012).
34.Cahill D.G., Lee S-M., and Selinder T.I.: Thermal conductivity of κ-Al2O3 and α-Al2O3 wear-resistant coatings. J. Appl. Phys. 83(11), 57835786 (1998).
35.Chu D., Touzelbaev M., Goodson K.E., Babin S., and Pease R.F.: Thermal conductivity measurements of thin-film resist. J. Vac. Sci. Technol. B 19(6), 28742877 (2011).
36.Bruggeman D.A.G.: Calculation of various physics constants in heterogeneous substances. Ann. Phys. 24, 636679 (1935).
37.Wong C.P. and Bollampally R.S.: Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer filled with ceramic particles for electronic packaging. J. Appl. Polym. Sci. 74, 33963403 (1999).
38.Hojo F., Kagawa H., and Takezawa Y.: Synthesis of a polymer composite with networked α-alumina fiber and evaluation of its thermal conductivity. J. Ceram. Soc. Jpn. 119(7), 601604 (2011).
39.Moreira D.C., Sphaier L.A., Reis J.M.L., and Nunes L.C.S.: Experimental investigation of heat conduction in polyester-Al2O3 and polyester-CuO nanocomposites. Expt. Thermal Fluid Sci. 35, 14581462 (2011).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 24 *
Loading metrics...

Abstract views

Total abstract views: 140 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd November 2017. This data will be updated every 24 hours.