Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-04-30T10:17:37.570Z Has data issue: false hasContentIssue false

Thermal evaluation of zone-melting recrystallization of thin-film structures over a wide range of melting points

Published online by Cambridge University Press:  03 March 2011

Richard D. Robinson
Affiliation:
Mechanical Engineering Department, Thermal Analysis of Materials Processing Laboratory, Tufts University, Medford, Massachusetts 02155
Peter Y. Wong
Affiliation:
Mechanical Engineering Department, Thermal Analysis of Materials Processing Laboratory, Tufts University, Medford, Massachusetts 02155
Ioannis N. Miaoulis*
Affiliation:
Mechanical Engineering Department, Thermal Analysis of Materials Processing Laboratory, Tufts University, Medford, Massachusetts 02155
*
a)Author to whom all correspondence should be addressed.
Get access

Abstract

Zone-melting recrystallization (ZMR) is a lateral epitaxy technique used to recrystallize polycrystalline thin films on substrates. Large-area multilayer structures of thin films processed with ZMR are usable in microelectronics applications. During the processing, slight variations in thermal gradients can lead to different crystalline qualities. Thus, processing uniformity over the wafer is strongly affected by the sensitivity of both the melt width and the solid/liquid interface to changes in the thermal environment. Processing control must either be set initially in a stable operating range or adjusted dynamically to variations in processing. Numerical simulations of the ZMR process were conducted to evaluate the sensitivity of the process over a wide range of temperatures and materials. Results indicate that material with melting points below 900 °C are very sensitive to temperature disturbances. This is due to the increased influence of conductive heating and decreased influence of radiative heating. The increased reflectivity during phase change curbs the amount of absorbed radiation. As the absorbed radiation becomes less influential, the sensitivity of the slush width decreases. Conductive effects should be considered when processing materials with melting points at or below 900 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zavracky, P. M., Solid State Technol. 34, 55 (1991).Google Scholar
2Mertens, P. W. and Maes, H. E., IEEE SOS/SOI Technology Conference (IEEE, New York, 1990), p. 55.Google Scholar
3Tillack, B., Banisch, R., Richter, H. H., Höppner, K., and Joachim, O., Mater. Sci. Eng. B15, 1 (1992).Google Scholar
4Tillack, B., Banisch, R., Januschewski, F., Richter, H. H., Hoppner, K., and Chovet, A., Mater. Sci. Eng. B18, 181 (1993).Google Scholar
5Sze, S. M., VLSI Technology (McGraw-Hill, New York, 1983), p. 84.Google Scholar
6Mertens, P. W., Thesis, Katholieke Universiteit Leuven, Belgium (1991) (University Microfilms Incorporated dissertation services, Ann Arbor, MI, 1992).Google Scholar
7Robinson, R. D. and Miaoulis, I. N., J. Appl. Phys. 75, 1771 (1994).Google Scholar
8Chen, C. K., Geis, M. W., Tsaur, B-Y., Chapman, R. L., and Fan, J. C. C., J. Electrochem. Soc. 131, 1707 (1984).Google Scholar
9Miaoulis, I. N., Wong, P. Y., Lipman, J. D., and Im, J. S., J. Appl.Phys. 69, 7273 (1991).Google Scholar
10Pfeiffer, L., Gelman, A. E., Jackson, K. A., and West, K. W., in Beam-Solid Interactions and Transient Processes, edited by Thompson, M. O., Pieraux, S. T., and Williams, J. S. (Mater. Res. Soc. Symp. Proc. 74, Pittsburgh, PA, 1987), p. 543.Google Scholar
11Robinson, R. D. and Miaoulis, I. N., J. Appl. Phys. 73, 439 (1993).CrossRefGoogle Scholar
12I, J. S., Chen, C. K., Thompson, C. V., Geis, M. W., and Tomita, H., in Silicon-on-Insulator and Buried Metals in Semiconductors, edited by Sturm, J. C., Chen, C. K., Pfeiffer, L., and Hemment, P. L. F. (Mater. Res. Soc. Symp. Proc. 107, Pittsburgh, PA, 1988), p. 169.Google Scholar
13Dutartre, D., Mater. Sci. Eng. B4, 211 (1989).Google Scholar
14Geis, M. W., Smith, H. I., Silversmith, D. J., Mountain, R. W., and Thompson, C. V., J. Electrochem. Soc. 130, 1178 (1983).Google Scholar
15Jackson, K. A. and Kurtze, D. A., J. Cryst. Growth 71, 385 (1985).Google Scholar
16Im, J. S., Lipman, J. D., Miaoulis, I. N., Chen, C. K., and Thompson, C. V., in Beam-Solid Interactions: Physical Phenomena, edited by Knapp, J. A., Borgesen, P., and Zuhr, R. A. (Mater. Res. Soc. Symp. Proc. 157, Pittsburgh, PA, 1990), p. 455.Google Scholar
17Yoon, S. M. and Miaoulis, I. N., J. Mater. Res. 7, 124 (1992).Google Scholar
18Robinson, R. D. and Miaoulis, I. N., in Crystallization and Related Phenomena in Amorphous Materials, edited by Libera, M., Haynes, T. E., Cebe, P., and Dickinson, J. E. Jr. (Mater. Res. Soc. Symp. Proc. 321, Pittsburgh, PA, 1994), p. 627.Google Scholar
19Heilman, B. D., Marston, M. A., Wong, P. Y., and Miaoulis, I. N., J. Mater. Res. 8, 551 (1993).Google Scholar
20Mullins, W. W. and Sekerka, R. F., J. Appl. Phys. 35, 444 (1964).Google Scholar
21The Flotherm Reference Manual (Flomerics Limited, England, 1992).Google Scholar
22Lipman, J. D., Thesis, Tufts University, Medford, MA (1989).Google Scholar
23Lipman, J. D., Wong, P. Y., Miaoulis, I. N., and Im, J. S., HTD-Vol. 123, Collected Papers in Heat Transfer (The American Society of Mechanical Engineers, New York, 1989), pp. 211217.Google Scholar
24Im, J. S., Ph. D. Thesis, Massachusetts Institute of Technology (1989).Google Scholar
25Grigoropoulos, C. P., Buckholz, R. H., and Domoto, G. A., J. Appl. Phys. 59, 454 (1986).Google Scholar
26Grigoropoulos, C. P., Buckholz, R. H., and Domoto, G. A., J. Appl. Phys. 62, 474 (1987).Google Scholar
27Chalmers, B., Principles of Solidification (John Wiley and Sons, New York, 1964), pp. 143157.Google Scholar
28Woodruff, D. P., The Solid-Liquid Interface (Cambridge University Press, London, 1973), p. 83.Google Scholar
29Mullins, W. W. and Sekerka, R. F., J. Appl. Phys. 35, 444 (1964).Google Scholar
30Knight, C. A., The Freezing of Supercooled Liquids (D. Van Nostrand Co., Toronto, 1967), p. 87.Google Scholar
31Flemings, M. C., Solidification Processing (McGraw-Hill, New York, 1974), p. 59.Google Scholar
32Hess, C. K., Wong, P. Y., and Miaoulis, I. N., HTD–Vol. 196, Transport Phenomena in Materials Processing and Manufacturing (The American Society of Mechanical Engineers, New York, 1992), pp. 221223.Google Scholar