Skip to main content

Thermal processing and enthalpy storage of a binary amorphous solid: A molecular dynamics study

  • Peter M. Derlet (a1) and Robert Maaß (a2)

Using very long molecular dynamics simulations of duration up to a microsecond of physical time, temperature protocols spanning up to five orders of magnitude in time are performed to investigate thermally activated structural relaxation in a model binary amorphous solid. The simulations demonstrate significant local structural excitations (LSE) as a function of increasing temperature and show that enthalpy rather than internal potential energy is primarily responsible for relaxation. At low temperatures these LSE involve atoms whose displacements are smaller than a typical bond length, whereas at higher temperatures approaching that of the glass transition regime, bond-length displacements occur in the form of string-like motion where one atom replaces the position of another. Such thermally activated excitations are observed to mainly involve the smaller atom type. The observed enthalpy changes can be correlated with the level of internal hydrostatic stress homogenization and icosahedral content within the glassy solid.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Franz Faupel

Hide All
1. Schuh, C.A., Hufnagel, T.C., and Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).
2. Hufnagel, T.C., Schuh, C.A., and Falk, M.L.: Acta materialia deformation of metallic glasses: Recent developments in theory, simulations, and experiments. Acta Mater. 109, 375 (2016).
3. Pampillo, C.A.: Localized shear deformation in a glassy metal. Scr. Metall. 6, 915 (1972).
4. Leamy, H.J., Chen, H.S., and Wang, T.T.: Plastic flow and fracture of metallic glass. Metall. Trans. 3, 699 (1972).
5. Sun, Y.H., Concustell, A., and Greer, A.L.: Rejuvenation of metallic glasses by non-affine thermal strain. Nat. Rev. 1, 1 (2016).
6. Ketov, S.V., Sun, Y.H., Nachum, S., Lu, Z., Checchi, A., Beraldin, A.R., Bai, H.Y., Wang, W.H., Louzguine-Luzgin, D.V., Carpenter, M.A., and Greer, A.L.: Rejuvenation of metallic glasses by non-affine thermal strain. Nature 200, 524 (2015).
7. Greer, A.L. and Sun, Y.H.: Stored energy in metallic glasses due to strains within the elastic limit. Philos. Mag. 96, 1643 (2016).
8. Küchemann, S. and Maass, R.: Gamma relaxation in bulk metallic glasses. Scr. Mater. 137, 5 (2017).
9. Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).
10. Argon, A.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).
11. Falk, M.L. and Langer, J.S.: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192 (1998).
12. Falk, M.L. and Langer, J.S.: Deformation and failure of amorphous, solidlike materials. Annu. Rev. Condens. Matter Phys. 2, 353 (2011).
13. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A 241, 376 (1957).
14. Bulatov, V.V. and Argon, A.S.: A stochastic model for continuum elasto-plastic behavior. I. Numerical approach and strain localization. Modell. Simul. Mater. Sci. Eng. 2, 167 (1994).
15. Bulatov, V.V. and Argon, A.S.: A stochastic model for continuum elasto-plastic behavior. II. A study of the glass transition and structural relaxation. Modell. Simul. Mater. Sci. Eng. 2, 185 (1994).
16. Bulatov, V.V. and Argon, A.S.: A stochastic model for continuum elasto-plastic behavior. III. Plasticity in ordered versus disordered solids. Modell. Simul. Mater. Sci. Eng. 2, 203 (1994).
17. Homer, E.R. and Schuh, C.A.: Mesoscale modeling of amorphous metals by shear transformation zone dynamics. Acta Mater. 57, 2823 (2009).
18. Homer, E.R. and Schuh, C.A.: Three-dimensional shear transformation zone dynamics model for amorphous metals. Modell. Simul. Mater. Sci. Eng. 18, 065009 (2010).
19. Li, L., Homer, E.R., and Schuh, C.A.: Shear transformation zone dynamics model for metallic glasses incorporating free volume as a state variable. Acta Mater. 61, 3347 (2013).
20. Maloney, C.E. and Lemaître, A.: Subextensive scaling in the athermal, quasistatic limit of amorphous matter in plastic shear flow. Phys. Rev. Lett. 93, 016001 (2004).
21. Shi, Y. and Falk, M.L.: Strain localization and percolation of stable structure in amorphous solids. Phys. Rev. Lett. 95, 095502 (2005).
22. Demkowicz, M.J. and Argon, A.S.: Liquidlike atomic environments act as plasticity carriers in amorphous silicon. Phys. Rev. B 72, 245205 (2005).
23. Rodney, D., Tanguy, A., and Vandembroucq, D.: Modeling the mechanics of amorphous solids at different length scale and time scale. Modell. Simul. Mater. Sci. Eng. 19, 083001 (2011).
24. Maaß, R., Klaumüzer, D., and Löffler, J.F.: Propagation dynamics of individual shear bands during inhomogeneous flow in a Zr-based bulk metallic glass. Acta Mater. 59, 3205 (2011).
25. Maaß, R., Klaumüzer, D., Villard, G., Derlet, P.M., and Löffler, J.F.: Shear-band arrest and stress overshoots during inhomogeneous flow in a metallic glass. Appl. Phys. Lett. 100, 071904 (2012).
26. Tönnies, D., Samwer, K., Derlet, P.M., Volkert, C.A., and Maaß, R.: Rate-dependent shear-band initiation in a metallic glass. Appl. Phys. Lett. 106, 171907 (2015).
27. Maaß, R. and Löffler, J.F.: Shear-band dynamics in metallic glasses. Adv. Funct. Mater. 25, 2353 (2015).
28. Barkema, G.T. and Mousseau, N.: Event-based relaxation of continuous disordered systems. Phys. Rev. Lett. 77, 4358 (1996).
29. Mousseau, N. and Barkema, G.T.: Traveling through potential energy landscapes of disordered materials: The activation-relaxation technique. Phys. Rev. E 57, 2419 (1998).
30. Olsen, R.A., Kroes, G.J., Henkelman, G., Arnaldsson, A., and Jónsson, H.: Comparison of methods for finding saddle points without knowledge of the final states. J. Chem. Phys. 121, 9776 (2004).
31. Rodney, D. and Schuh, C.A.: Distribution of thermally activated plastic events in a flowing glass. Phys. Rev. Lett. 102, 235503 (2009).
32. Rodney, D. and Schuh, C.A.: Yield stress in metallic glasses: The jamming–unjamming transition studied through Monte Carlo simulations based on the activation-relaxation technique. Phys. Rev. B 80, 184203 (2009).
33. Kallel, H., Mousseau, N., and Schiettekatte, F.: Evolution of the potential-energy surface of amorphous silicon. Phys. Rev. Lett. 105, 045503 (2010).
34. Koziatek, P., Barrat, J-L., Derlet, P.M., and Rodney, D.: Inverse Meyer-Neldel behavior for activated processes in model glasses. Phys. Rev. B 87, 224105 (2013).
35. Swayamjyoti, S., Löffler, J.F., and Derlet, P.M.: Local structural excitations in model glasses. Phys. Rev. B 89, 224201 (2014).
36. Fan, Y., Iwashita, T., and Egami, T.: How thermally activated deformation starts in metallic glass. Nat. Commun. 5, 5083 (2014).
37. Fan, Y., Iwashita, T., and Egami, T.: Crossover from localized to cascade relaxations in metallic glasses. Phys. Rev. Lett. 115, 045501 (2015).
38. Swayamjyoti, S., Löffler, J.F., and Derlet, P.M.: Local structural excitations in model glass systems under applied load. Phys. Rev. B 93, 144202 (2016).
39. Wahnström, G.: Molecular-dynamics study of a supercooled two-component Lennard-Jones system. Phys. Rev. A 44, 3752 (1991).
40. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995). Available at:
41. Baumer, R.E. and Demkowicz, M.J.: Glass transition by gelation in a phase separating binary alloy. Phys. Rev. Lett. 110, 145502 (2013).
42. Derlet, P.M., Maaß, R., and Löffler, J.F.: The boson peak of model glass systems and its relation to atomic structure. Eur. Phys. J. B 85, 148 (2012).
43. Chen, H.S. and Coleman, E.: Structure relaxation spectrum of metallic glasses. Appl. Phys. Lett. 28, 245 (1976).
44. Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J.M., and Ma, E.: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 (2006).
45. Ding, J., Cheng, Y-Q., and Ma, E.: Full icosahedra dominate local order in Cu64Zr34 metallic glass and supercooled liquid. Acta Mater. 69, 343 (2014).
46. Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).
47. Donati, C., Douglas, J.F., Kob, W., Plimpton, S.J., Poole, P.H., and Glotzer, S.C.: Stringlike cooperative motion in a supercooled liquid. Phys. Rev. Lett. 80, 2338 (1998).
48. Schröder, T.B., Sastry, S., Dyre, J.C., and Glotzer, S.C.: Crossover to potential energy landscape dominated dynamics in a model glass-forming liquid. J. Chem. Phys. 112, 9834 (2000).
49. Gebremichael, Y., Vogel, M., and Glotzer, S.C.: Particle dynamics and the development of string-like motion in a simulated monoatomic supercooled liquid. J. Chem. Phys. 120, 4415 (2004).
50. Vogel, M., Doliwa, B., Heuer, A., and Glotzer, S.C.: Particle rearrangements during transitions between local minima of the potential energy landscape of a binary Lennard-Jones liquid. J. Chem. Phys. 120, 4404 (2004).
51. Kawasaki, T. and Onuki, A.: Dynamics of thermal vibrational motions and stringlike jump motions in three-dimensional glass-forming liquids. J. Chem. Phys. 138, 12A514 (2013).
52. Faupel, F., Frank, W., Macht, M-P., Mehrer, H., Naundorf, V., Rätzke, K., Schober, H.R., Sharma, S.K., and Teichler, H.: Diffusion in metallic glasses and supercooled melts. Rev. Mod. Phys. 75, 237 (2003).
53. Schober, H.R., Gaukel, C., and Oligschleger, C.: Low energy excitations in glasses and melts. Prog. Theor. Phys. Suppl. 126, 67 (1997).
54. Oligschleger, C. and Schober, H.R.: Collective jumps in a soft-sphere glass. Phys. Rev. B 59, 811 (1999).
55. Teichler, H.: Structural dynamics on the us scale in molecular-dynamics simulated, deeply undercooled, glass forming Ni0.5Zr0.5 . J. Non-Cryst. Solids 293, 339 (2001).
56. Ciamarra, M.P., Pastore, R., and Coniglio, A.: Particle jumps in structural glasses. Soft Matter 12, 358 (2016).
57. Battezzati, L., Riontino, G., Baricco, M., Lucci, A., and Marino, F.A.: DSC study of structural relaxation in metallic glasses prepared with different quenching rates. J. Non-Cryst. Solids 61–62, 877 (1984).
58. Pan, J., Chen, Q., Liu, L., and Li, Y.: Softening and dilatation in a single shear band. Acta Mater. 59, 5146 (2011).
59. Chaudhari, P. and Turnbull, D.: Structure and properties of metallic glasses. Science 199, 11 (1978).
60. Daw, M.S. and Baskes, M.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).
61. Suzuki, Y. and Egami, T.: Shear deformation of glassy metals: Breakdown of cauchy relationship and anelasticity. J. Non-Cryst. Solids 75, 361 (1985).
62. Léonforte, F., Boissière, R., Tanguy, A., Wittmer, J.P., and Barrat, J-L.: Continuum limit of amorphous elastic bodies. III. Three-dimensional systems. Phys. Rev. B 72, 224206 (2005).
63. Léonforte, F., Tanguy, A., Wittmer, J.P., and Barrat, J-L.: Inhomogeneous elastic response of silica glass. Phys. Rev. Lett. 97, 055501 (2006).
64. Tsamados, M., Tanguy, A., Goldenberg, C., and Barrat, J-L.: Local elasticity map and plasticity in a model Lennard-Jones glass. Phys. Rev. E 80, 026112 (2009).
65. Ma, E.: Tuning order in disorder. Nat. Mater. 14, 547 (2015).
66. Miracle, D.B.: A structural model for metallic glasses. Nat. Mater. 3, 697 (2004).
67. Tanaka, H.: Roles of local icosahedral chemical ordering in glass and quasicrystal formation in metallic glass formers. J. Phys.: Condens. Matter 15, L491 (2003).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed