Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T03:13:34.364Z Has data issue: false hasContentIssue false

Thermochemistry of A2M3O12 negative thermal expansion materials

Published online by Cambridge University Press:  31 January 2011

Tamas Varga*
Affiliation:
Thermochemistry Facility and Nanomaterials in the Environment, Agriculture & Technology Organized Research Unit (NEAT ORU), University of California at Davis, Davis, California 95616
Julianna L. Moats
Affiliation:
Thermochemistry Facility and Nanomaterials in the Environment, Agriculture & Technology Organized Research Unit (NEAT ORU), University of California at Davis, Davis, California 95616
Sergey V. Ushakov
Affiliation:
Thermochemistry Facility and Nanomaterials in the Environment, Agriculture & Technology Organized Research Unit (NEAT ORU), University of California at Davis, Davis, California 95616
Alexandra Navrotsky
Affiliation:
Thermochemistry Facility and Nanomaterials in the Environment, Agriculture & Technology Organized Research Unit (NEAT ORU), University of California at Davis, Davis, California 95616
*
a)Address all correspondence to this author. e-mail: tvarga@anl.gov Present address: Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

The enthalpies of the monoclinic to orthorhombic transition for a series of A2M3O12 (A = Al, Cr, Fe, In, and Sc; M = Mo or W) compounds were measured by differential scanning calorimetry, and entropies of transition were estimated. The enthalpies of formation from the binary oxides at 25 °C for several A2M3O12 samples were obtained from drop solution calorimetry in molten 3Na2O·4MoO3 at 702 °C. The monoclinic and orthorhombic phases of Sc2Mo3O12 and Sc2W3O12 are the only phases that are enthalpically stable under ambient conditions. The enthalpies of formation from the oxides (ΔHf,ox) for orthorhombic Sc2Mo3O12 and Sc2W3O12 are −47.2 ± 2.1 kJ/mol and −8.5 ± 2.7 kJ/mol, respectively. For Fe2Mo3O12, In2Mo3O12, and In2W3O12, ΔHf,ox values are 51.5 ± 4.5, 7.4 ± 2.9, and 44.5 ± 2.3 kJ/mol, respectively. These phases are entropically stabilized and/or metastable. Enthalpies of formation for phases that could not be measured by calorimetry have been estimated from the enthalpies of transition or trends in the enthalpies of formation. In general, the monoclinic phase is slightly enthalpically stabilized over the orthorhombic phase, while transition to the orthorhombic phase is entropically favored. This confirms that the orthorhombic phase is stable at high temperatures, the monoclinic is stable at low temperatures, and the monoclinic to orthorhombic transition is reversible.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Sleight, A.W.: Negative thermal expansion materials. Curr. Opin. Solid State Mater. Sci. 3, 128 1998CrossRefGoogle Scholar
2Sleight, A.W.: Isotropic negative thermal expansion. Ann. Rev. Mater. Sci. 28, 29 1998Google Scholar
3Evans, J.S.O., Mary, T.A.Sleight, A.W.: Negative thermal expansion materials. Phys. B (Amsterdam) 241–243, 311 1998Google Scholar
4Evans, J.S.O.: Negative thermal expansion materials. J. Chem. Soc., Dalton Trans. 3317 1999Google Scholar
5Evans, J.S.O., Mary, T.A.Sleight, A.W.: Negative thermal expansion in a large molybdate and tungstate family. J. Solid State Chem. 133, 580 1997Google Scholar
6Evans, J.S.O., Mary, T.A.Sleight, A.W.: Negative thermal expansion in Sc2(WO4)3. J. Solid State Chem. 137, 148 1998CrossRefGoogle Scholar
7Forster, P.M., Yokochi, A.Sleight, A.W.: Enhanced negative thermal expansion in Lu2W3O12. J. Solid State Chem. 140, 157 1998CrossRefGoogle Scholar
8Imanaka, N., Hiraiwa, M., Adachi, G., Dabkowska, H.Dabkowski, A.: Thermal contraction in Al2(WO4)3 single crystal. J. Cryst. Growth 220, 176 2000CrossRefGoogle Scholar
9Woodcock, D.A., Lightfoot, P.Ritter, C.: Negative thermal expansion in Y2(WO4)3. J. Solid State Chem. 149, 92 2000CrossRefGoogle Scholar
10Imanaka, N.Adachi, G-y.: Rare earth contribution in solid state electrolytes, especially in the chemical sensor field. J. Alloys Compd. 250, 492 1997Google Scholar
11Okazaki, Y., Ueda, T., Tamura, S., Imanaka, N.Adachi, G.: Trivalent Sc3+ ion conduction in the Sc2(WO4)3-Sc2(MoO4)3 solid solution. Solid State Ionics 136–137, 437 2000CrossRefGoogle Scholar
12Adachi, G., Imanaka, N.Tamura, S.: Rare earth ion conduction in solids. J. Alloys Compd. 323–324, 534 2001Google Scholar
13Imanaka, N.Adachi, G-Y.: Rare earth ion conduction in tungstate and phosphate solids. J. Alloys Compd. 344, 137 2002CrossRefGoogle Scholar
14Imanaka, N., Kobayashi, Y.Adachi, G-y.: A direct evidence for trivalent ion conduction in solids. Chem. Lett. (Jpn.) 6, 433 1995Google Scholar
15Gallucci, E., Goutaudier, C., Bourgeois, F., Boulon, G.Cohen-Adad, M.T.: Comprehensive study of third-order nonlinear tungstates: Relationship between structural and vibrational properties in Raman shifters. J. Solid State Chem. 163, 506 2002Google Scholar
16Secco, R.A., Liu, H., Imanaka, N.Adachi, G.: Pressure-induced amorphization in negative thermal expansion Sc2(WO4)3. J. Mater. Sci. Lett. 20, 1339 2001CrossRefGoogle Scholar
17Secco, R.A., Liu, H., Imanaka, N.Adachi, G.: Anomalous ionic conductivity of Sc2(WO4)3 mediated by structural changes at high pressures and temperatures. J. Phys. Condens. Matter 14, 11285 2002Google Scholar
18Secco, R.A., Liu, H., Imanaka, N., Adachi, G.Rutter, M.D.: Electrical conductivity and amorphization of Sc2(WO4)3 at high pressures and temperatures. J. Phys. Chem. Solids 63, 425 2002CrossRefGoogle Scholar
19Varga, T., Wilkinson, A.P., Lind, C., Bassett, W.A.Zha, C-S.: In situ high-pressure synchrotron x-ray diffraction study of Sc2W3O12 at up to 10 GPa. Phys. Rev. B 71, 214106 2005CrossRefGoogle Scholar
20Varga, T., Wilkinson, A.P., Jorgensen, J.D.Short, S.: Neutron powder diffraction study of the orthorhombic to monoclinic transition in Sc2W3O12 on compression. Solid State Sci. 8, 289 2006CrossRefGoogle Scholar
21Weller, M.T., Henry, P.F.Wilson, C.C.: An analysis of the thermal motion in the negative thermal expansion material Sc2(WO4)3 using isotopes in neutron diffraction. J. Phys. Chem. B 104, 12224 2000CrossRefGoogle Scholar
22Maczka, M., Hermanowicz, K.Hanuza, J.: Phase transition and vibrational properties of A2(BO4)3 compounds (A = Sc, In; B = Mo, W). J. Molec. Struct. 744–747, 283 2005Google Scholar
23Garg, N., Murli, C., Tyagi, A.K.Sharma, S.M.: Phase transitions in Sc2(WO4)3 under high pressure. Phys. Rev. B 72, 064106 2005Google Scholar
24Evans, J.S.O.Mary, T.A.: Structural phase transitions and negative thermal expansion in Sc2(MoO4)3. Int. J. Inorg. Mater. 2, 143 2000CrossRefGoogle Scholar
25Paraguassu, W., Maczka, M., Filho, A.G. Souza, Freire, P.T.C., Filho, J. Mendes, Melo, F.E.A., Macalik, L., Gerward, L., Olsen, J. Staun, Waskowska, A.Hanuza, J.: Pressure-induced structural transformations in the molybdate Sc2(MoO4)3. Phys. Rev. B 69, 094111(1 2004CrossRefGoogle Scholar
26Arora, A.K., Nithya, R., Yagi, T., Miyajima, N.Mary, T.A.: Two-stage amorphization of scandium molybdate at high pressure. Solid State Commun. 129, 9 2004Google Scholar
27Varga, T., Wilkinson, A.P., Lind, C., Bassett, W.A.Zha, C-S.: High pressure synchrotron x-ray powder diffraction study of Sc2Mo3O12 and Al2W3O12. J. Phys. Condens. Matter 17, 4271 2005CrossRefGoogle Scholar
28Arora, A.K., Yagi, T., Miyajima, N.Mary, T.A.: Amorphization and decomposition of scandium molybdate at high pressure. J. Appl. Phys. 97, 013508 2005Google Scholar
29Ravindran, T.R., Sivasubramanian, V.Arora, A.K.: Low temperature Raman spectroscopic study of scandium molybdate. J. Phys. Condens. Matter 17, 277 2005Google Scholar
30Tyagi, A.K., Achary, S.N.Mathews, M.D.: Phase transition and negative thermal expansion in A2(MoO4)3 system (A = Fe3+, Cr3+ and Al3+). J. Alloys Compd. 339, 207 2002Google Scholar
31Achary, S.N., Mukherjee, G.D., Tyagi, A.K.Vaidya, S.N.: Preparation, thermal expansion, high pressure and high temperature behavior of Al2(WO4)3. J. Mater. Sci. 37, 2501 2002CrossRefGoogle Scholar
32Mukherjee, G.D., Achary, S.N., Tyagi, A.K.Vaidya, S.N.: High pressure AC resistivity and compressibility study on Al2(WO4)3. J. Phys. Chem. Solids 64, 611 2003CrossRefGoogle Scholar
33Maczka, M., Paraguassu, W., Filho, A.G. Souza, Freire, P.T.C., Filho, J. Mendes, Melo, F.E.A.Hanuza, J.: High-pressure Raman study of Al2(WO4)3. J. Solid State Chem. 177, 2002 2004CrossRefGoogle Scholar
34Mukherjee, G.D., Vijaykumar, V., Achary, S.N., Tyagi, A.K.Godwal, B.K.: Phase transitions in Al2(WO4)3: High pressure investigations of low frequency dielectric constant and crystal structure. J. Phys. Condens. Matter 16, 7321 2004Google Scholar
35Garg, N., Panchal, V., Tyagi, A.K.Sharma, S.K.: Pressure-induced phase transitions in Al2(WO4)3. J. Solid State Chem. 178, 998 2005Google Scholar
36Aizu, K.: Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals. Phys. Rev. B 2, 754 1970CrossRefGoogle Scholar
37Nassau, K., Levinstein, H.J.Loiacono, G.M.: Trivalent rare-earth tungstates of the type M2(WO4)3. J. Am. Ceram. Soc. 47, 363 1964CrossRefGoogle Scholar
38Nassau, K., Levinstein, H.J.Loiacono, G.M.: A comprehensive study of trivalent tungstates and molybdates of the type L2(MO4)3. J. Phys. Chem. Solids 26, 1805 1965Google Scholar
39Sleight, A.W.Brixner, L.H.: A new ferroelastic transition in some A2(MO4)3 molybdates and tungstates. J. Solid State Chem. 7, 172 1973Google Scholar
40Fleming, D.A., Johnson, D.W.Lemaire, P.J.: Article comprising a temperature compensated optical fiber refractive index grating, U.S. Patent No. 5 694 503 (1997)Google Scholar
41Verdon, C.Dunand, D.C.: High-temperature reactivity in the ZrW2O8–Cu system. Scripta Mater. 36, 1075 1997Google Scholar
42Fleming, D.A., Lemaire, P.J.Johnson, D.W.: Temperature compensated optical fiber refractive index grating. European Patent 97-306798, 19970902 (1998)Google Scholar
43Holzer, H.Dunand, D.C.: Phase transformation and thermal expansion of Cu/ZrW2O8 metal matrix composites. J. Mater. Res. 14, 780 1999CrossRefGoogle Scholar
44Balch, D.K.Dunand, D.C.: Copper-zirconium tungstate composites exhibiting low and negative thermal expansion influenced by reinforcement phase transformations. Metall. Mater. Trans. A 35A, 1159 2004CrossRefGoogle Scholar
45Amosov, V.M.Plyushchev, V.E.: Thermochemistry of tungstates of scandium subgroup elements. Neorg. Mater. 4, 1309 1968Google Scholar
46Reznitskii, L.A.: Enthalpy factor of stabilization and a high cationic conductivity of molybdates M2(MoO4)3 with Sc2(WO4)3-type structure. Zh. Fizicheskoi Khimii 76, 1528 2002Google Scholar
47Sivasubramanian, V., Ravindran, T.R.Arora, A.K.: Structural phase transition in indium tungstate. J. Appl. Phys. 96, 387 2004Google Scholar
48Navrotsky, A.: Progress and new directions in high temperature calorimetry. Phys. Chem. Miner. 2, 89 1977Google Scholar
49Navrotsky, A.: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24, 222 1997CrossRefGoogle Scholar
50Navrotsky, A.Kleppa, O.J.: A calorimetric study of molten Na2MoO4–MoO3 mixtures at 970 °K. Inorg. Chem. 6, 2119 1967CrossRefGoogle Scholar
51Cheng, J.H.Navrotsky, A.: Enthalpies of formation of LaBO3 perovskites (B = Al, Ga, Sc, and In). J. Mater. Res. 18, 2501 2003Google Scholar
52Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distancesin halides and chalcogenides. Acta Crystallogr., Sect. A 32, 751 1976Google Scholar
53 WebElements, http://www.webelements.com, (University of Sheffield and WebElements Ltd., Sheffield, UK, 1993–2007): Accessed April 2, 2007.Google Scholar
54Navrotsky, A.: Repeating patterns in mineral energetics. Am. Mineral. 79, 589 1994Google Scholar
55Varga, T., Lind, C., Wilkinson, A.P., Xu, H., Lesher, C.E.Navrotsky, A.: Heats of formation for several crsytalline polymorphs and pressure-induced amorphous forms of AM2O8 (A = Zr, Hf) and ZrW2O8. Chem. Mater. 19, 468 2007Google Scholar
56 JADE: (Materials Data, Inc., Livermore, CA, 2002)Google Scholar
57Allred, A.L.Rochow, E.G.: A scale of electronegativity based on electrostatic force. J. Inorg. Nucl. Chem. 5, 264 1958Google Scholar
58Harrison, W.T.A.: Crystal structures of paraelastic aluminum molybdate and ferric molybdate, β–Al2(MoO4)3 and β–Fe2(MoO4)3. Mater. Res. Bull. 30, 1325 1995Google Scholar
59Majzlan, J., Navrotsky, A.Evans, B.J.: Thermodynamics and crystal chemistry of the hematite-corundum solid solution and the FeAlO3 phase. Phys. Chem. Miner. 29, 515 2002Google Scholar
60Bale, C.W., Chartrand, P., Degterov, S.A., Eriksson, G., Hack, K., Mahfoud, R. Ben, Melançon, J., Pelton, A.D.Petersen, S.: FactSage thermochemical software and databases. CALPHAD 26, 189 2002Google Scholar
61Ranade, M.R., Tessier, F., Navrotsky, A.Marchand, R.: Calorimetric determination of the enthalpy of formation of InN and comparison with AlN and GaN. J. Mater. Res. 16, 2824 2001Google Scholar