Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-15T09:45:13.464Z Has data issue: false hasContentIssue false

Thermodynamic and kinetic fragilities of Mg-based bulk metallic glass-forming liquids

Published online by Cambridge University Press:  31 January 2011

H. Ma*
Affiliation:
Institute of Micro and Nanomaterials, Faculty of Engineering, Ulm University, 89081 Ulm, Germany
H-J. Fecht
Affiliation:
Institute of Micro and Nanomaterials, Faculty of Engineering, Ulm University, 89081 Ulm, Germany; and Research Center Karlsruhe, Institute of Nanotechnology, 76021 Karlsruhe, Germany
*
a)Address all correspondence to this author. e-mail: han.ma@uni-ulm.de
Get access

Abstract

The thermodynamic and kinetic fragilities of two near-eutectic Mg-based bulk metallic glass (BMG)-forming liquids, Mg61Cu28Gd11 and Mg59.5Cu22.9Ag6.6Gd11, were investigated using high-precision differential scanning calorimeter (DSC). The thermodynamic fragility denoted as F3/4 was determined by evaluating the temperature dependence of the excess entropy Sex. The heating rate dependence of the relaxation time at the glass transition temperature was investigated to measure the kinetic fragility. A positive correlation between the thermodynamic and kinetic fragilities could be established in Mg-based BMG-forming liquids on the basis of Adam-Gibbs equation in contrast to a number of other BMGs.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24(10), 42 1999Google Scholar
2Drozdz, D., Wunderlich, R.K., Fecht, H-J.: Cavitation erosion behaviour of Zr-based bulk metallic glasses. Wear 262, 176 2007Google Scholar
3Greer, A.L.: Metallic glasses. Science 267, 1947 1995CrossRefGoogle ScholarPubMed
4Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 2000CrossRefGoogle Scholar
5Angell, C.A.: Formation of glasses from liquids and biopolymers. Science 267, 1924 1995Google Scholar
6Böhmer, R., Ngai, K.L., Angell, C.A., Plazek, D.J.: Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99, 4201 1993CrossRefGoogle Scholar
7Gallino, I., Shah, M.B., Busch, R.: Enthalpy relaxation and its relation to the thermodynamics and crystallization of the Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 bulk metallic glass-forming alloy. Acta Mater. 55, 1367 2007Google Scholar
8Zheng, Q., Xu, J., Ma, E.: High glass-forming ability correlated with fragility of Mg–Cu(Ag)–Gd alloys. J. Appl. Phys. 102, 113519 2007CrossRefGoogle Scholar
9Fan, G.J., Löffler, J.F., Wunderlich, R.K., Fecht, H-J.: Thermodynamics, enthalpy relaxation and fragility of the bulk metallic glass-forming liquid Pd43Ni10Cu27P20. Acta Mater. 52, 667 2004CrossRefGoogle Scholar
10Fan, G.J., Lavernia, E.J., Wunderlich, R.K., Fecht, H-J.: The relationship between kinetic and thermodynamic fragilities in metallic glass-forming liquids. Philos. Mag. 84, 2471 2004CrossRefGoogle Scholar
11Busch, R., Liu, W., Johnson, W.L.: Thermodynamics and kinetics of the Mg65Cu25Y10 bulk metallic glass forming liquid. J. Appl. Phys. 83, 4134 1998CrossRefGoogle Scholar
12Legg, B.A., Schroers, J., Busch, R.: Thermodynamics, kinetics, and crystallization of Pt57.3Cu14.6Ni5.3P22.8 bulk metallic glass. Acta Mater. 55, 1109 2007CrossRefGoogle Scholar
13Busch, R., Bakke, E., Johnson, W.L.: Viscosity of the supercooled liquid and relaxation at the glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy. Acta Mater. 46, 4725 1998CrossRefGoogle Scholar
14Lu, I-R., Wilde, G., Goerler, G.P., Willnecker, R.: Thermodynamic properties of Pd-based glass-forming alloys. J. Non-Cryst. Solids 250–252, 577 1999CrossRefGoogle Scholar
15Lu, Z.P., Tan, H., Li, Y.: Glass formation and glass forming ability of La based alloys. Mater. Trans., JIM 41, 1397 2000CrossRefGoogle Scholar
16Shadowspeaker, L., Busch, R.: On the fragility of Nb–Ni–based and Zr-based bulk metallic glasses. Appl. Phys. Lett. 85, 2508 2004CrossRefGoogle Scholar
17Fan, G.J., Fecht, H-J., Lavernia, E.J.: Viscous flow of the Pd43Ni10Cu27P20 bulk metallic glass-forming liquid. Appl. Phys. Lett. 84, 487 2004CrossRefGoogle Scholar
18Tanaka, H.: Relationship among glass-forming ability, fragility, and short-range bond ordering of liquids. J. Non-Cryst. Solids 351, 678 2005CrossRefGoogle Scholar
19Martinez, L-M., Angell, C.A.: A thermodynamic connection to the fragility of glass-forming liquids. Nature 410, 663 2001CrossRefGoogle Scholar
20Ngai, K.L., Yamamuro, O.: Thermodynamic fragility and kinetic fragility in supercooling liquids: A missing link in molecular liquids. J. Chem. Phys. 111, 10403 1999CrossRefGoogle Scholar
21Inoue, A., Nakamura, T., Nishiyama, N., Masumoto, T.: Mg–Cu–Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method. Mater. Trans., JIM 33, 937 1992CrossRefGoogle Scholar
22Zheng, Q., Cheng, S., Strader, J.H., Ma, E., Xu, J.: Critical size and strength of the best bulk metallic glass former in the Mg–Cu–Gd ternary system. Scr. Mater. 56, 161 2007Google Scholar
23Schlorke, N., Eckert, J., Schultz, L.: Formation and stability of bulk metallic glass forming Mg–Y–Cu alloys produced by mechanical alloying and rapid quenching. Mater. Sci. Forum 269–272, 761 1998Google Scholar
24Ma, H., Xu, J., Ma, E.: Mg-based bulk metallic glass composites with plasticity and high strength. Appl. Phys. Lett. 83, 2793 2003CrossRefGoogle Scholar
25Ma, H., Shi, L.L., Xu, J., Li, Y., Ma, E.: Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl. Phys. Lett. 87, 181915 2005CrossRefGoogle Scholar
26Zheng, Q., Ma, H., Ma, E., Xu, J.: Mg–Cu–(Y, Nd) pseudo-ternary bulk metallic glasses: The effects of Nd on glass-forming ability and plasticity. Scr. Mater. 55, 541 2006CrossRefGoogle Scholar
27Zhang, L., Ma, E., Xu, J.: Hf-based bulk metallic glasses with critical diameter on centimeter scale. Intermetallics 16, 584 2008Google Scholar
28Zhang, L., Zhuo, M.J., Xu, J.: Enhancing bulk metallic glass formation in Ni–Nb–Sn-based alloys via substitutional alloying with Co and Hf. J. Mater. Res. 23, 688 2008CrossRefGoogle Scholar
29Sastry, S.: The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids. Nature 409, 164 2001CrossRefGoogle ScholarPubMed
30Scala, A., Starr, F.W., Nave, E.L., Sciortino, F., Stanley, H.E.: Configurational entropy and diffusivity of supercooled water. Nature 406, 166 2000CrossRefGoogle ScholarPubMed
31Fecht, H-J., Johnson, W.L.: Entropy and enthalpy catastrophe as a stability limit for crystalline material. Nature 334, 50 1988CrossRefGoogle Scholar
32Angell, C.A., Borick, S.: Specific heats C p, C v, C conf and energy landscapes of glassforming liquids. J. Non-Cryst. Solids 307, 393 2002Google Scholar
33Prevosto, D., Lucchesi, M., Capaccioli, S., Casalini, R., Rolla, P.A.: Correlation between configurational entropy and structural relaxation time in glass-forming liquids. Phys. Rev. B 67, 174202 2003CrossRefGoogle Scholar
34Corezzi, S., Comez, L., Fioretto, D.: Can experiments select the configurational component of excess entropy? Eur. Phys. J. E 14, 143 2004Google Scholar
35Stillinger, F.H.: A topographic view of supercooled liquids and glass formation. Science 267, 1935 1995Google Scholar
36Glade, S.C., Busch, R., Lee, D.S., Johnson, W.L., Wunderlich, R.K., Fecht, H-J.: Thermodynamics of Cu47Ti34Zr11Ni8, Zr52.5Cu17.9Ni14.6Al10Ti5 and Zr57Cu15.4Ni12.6Al10Nb5 bulk metallic glass forming alloys. J. Appl. Phys. 87, 7242 2000CrossRefGoogle Scholar