Skip to main content
×
Home

Thermoelectric and thermal transport properties of complex oxide thin films, heterostructures and superlattices

  • Jayakanth Ravichandran (a1)
Abstract
Abstract

Over the years, the search for high performance thermoelectric materials has been dictated by the “phonon glass and electron crystal (PGEC)” paradigm, which suggests that low band gap semiconductors with high atomic number elements and high carrier mobility are the ideal materials to achieve high thermoelectric figure of merit. Complex oxides provide alternative mechanisms such as large density of states and strong electron correlation for high thermoelectric efficiency, albeit having low carrier mobility. Due to vast structural and chemical flexibility, they provide a fertile playground to design high efficiency thermoelectric materials. Further, developments in oxide thin film growth methods have enabled synthesis of high quality, atomically precise low dimensional structures such as heterostructures and superlattices. These materials and structures act as excellent model systems to explore nanoscale thermal and thermoelectric transport, which will not only expand the frontier of our knowledge, but also continue to enable cutting edge applications.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Thermoelectric and thermal transport properties of complex oxide thin films, heterostructures and superlattices
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Thermoelectric and thermal transport properties of complex oxide thin films, heterostructures and superlattices
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Thermoelectric and thermal transport properties of complex oxide thin films, heterostructures and superlattices
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
a) Address all correspondence to this author. e-mail: jayakanr@usc.edu
References
Hide All
1. Rowe D.M.: CRC Handbook of Thermoelectrics (CRC Press, 1995).
2. Snyder G.J. and Toberer E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).
3. Bhandari C.M.: Minimizing the thermal conductivity. In CRC Handbook of Thermoelectrics, Rowe D.M., ed. (CRC Press: Boca Raton, 1995).
4. Rowe D. and Bhandari C.: Optimization of carrier concentration. In CRC Handbook of Thermoelectrics, Rowe D.M., ed. (CRC Press, Boca Raton, 1995).
5. Bell L.E.: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457 (2008).
6. Slack G.: New materials and performance limits for thermoelectric cooling. In CRC Handbook of Thermoelectrics, Rowe D.M. ed.; CRC Press: 1995.
7. Nolas G.S., Cohn J.L., Slack G.A., and Schujman S.B.: Semiconducting Ge Clathrates: Promising candidates for thermoelectric applications. Appl. Phys. Lett. 73, 178 (1998).
8. Cohn J.L., Nolas G.S., Fessatidis V., Metcalf T.H., and Slack G.A.: Glasslike heat conduction in high-mobility crystalline semiconductors. Phys. Rev. Lett. 82, 779 (1999).
9. Nolas G.S., Cohn J.L., Slack G.A., and Schujman S.B.: Skutterudites: A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annu. Rev. Mater. Sci. 29, 89 (1999).
10. Hicks L. and Dresselhaus M.: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B: Condens. Matter Mater. Phys. 47, 12727 (1993).
11. Hicks L. and Dresselhaus M.: Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B: Condens. Matter Mater. Phys. 47, 16631 (1993).
12. Harman T., Spears D., and Manfra M.: High thermoelectric figures of merit in PbTe quantum wells. J. Electron. Mater. 25, 1121 (1996).
13. Venkatasubramanian R., Siivola E., Colpitts T., and O'quinn B.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001).
14. Hsu K.F., Loo S., Guo F., Chen W., Dyck J.S., Uher C., Hogan T., Polychroniadis E.K., and Kanatzidis M.G.: Cubic AgPb m SbTe2+m : Bulk thermoelectric materials with high figure of merit. Science 303, 818 (2004).
15. Biswas K., He J., Blum I.D., Wu C-I., Hogan T.P., Seidman D.N., Dravid V.P., and Kanatzidis M.G.: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414 (2012).
16. Vineis C., Shakouri A., and Majumdar A.: Nanostructured thermoelectrics: Big efficiency gains from small features. Adv. Mater. 22, 3970 (2010).
17. Gaultois M.W., Sparks T.D., Borg C.K.H., Seshadri R., Bonificio W.D., and Clarke D.R.: Data-driven review of thermoelectric Materials: Performance and resource considerations. Chem. Mater. 25, 2911 (2013).
18. Yee S.K., LeBlanc S., Goodson K.E., and Dames C.: $ per W metrics for thermoelectric power generation: Beyond ZT . Energy Environ. Sci. 6, 2561 (2013).
19. LeBlanc S., Yee S.K., Scullin M.L., Dames C., and Goodson K.E.: Material and manufacturing cost considerations for thermoelectrics. Renewable Sustainable Energy Rev. 32, 313 (2014).
20. Okuda T., Nakanishi K., Miyasaka S., and Tokura Y.: Large thermoelectric Response of metallic perovskites: Sr1−x La x TiO3 (0 < x < 0.1). Phys. Rev. B: Condens. Matter Mater. Phys. 63, 113104 (2001).
21. Terasaki I., Sasago Y., and Uchinokura K.: Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B: Condens. Matter Mater. Phys. 56, R12685 (1997).
22. Mukerjee S. and Moore J.E.: Doping dependence of thermopower and thermoelectricity in strongly correlated materials. Appl. Phys. Lett. 90, 112107 (2007).
23. Koshibae W. and Maekawa S.: Effects of spin and orbital degeneracy on the thermopower of strongly correlated systems. Phys. Rev. Lett. 87, 236603 (2001).
24. Koshibae W., Tsutsui K., and Maekawa S.: Thermopower in cobalt oxides. Phys. Rev. B: Condens. Matter Mater. Phys. 62, 6869 (2000).
25. Chowdhury I., Prasher R., Lofgreen K., Chrysler G., Narasimhan S., Mahajan R., Koester D., Alley R., and Venkatasubramanian R.: On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 4, 235 (2009).
26. Miorandi D., Sicari S., De Pellegrini F., and Chlamtac I.: Internet of things: Vision, applications and research challenges. Ad Hoc Netw. 10, 1497 (2012).
27. Koumoto K., Terasaki I., and Funahashi R.: Complex oxide materials for potential thermoelectric applications. MRS Bull. 31, 206 (2006).
28. Koumoto K., Wang Y., Zhang R., Kosuga A., and Funahashi R.: Oxide thermoelectric materials: A nanostructuring approach. Annu. Rev. Mater. Res. 40, 363 (2010).
29. Koumoto K.: Oxide Thermoelectrics. In Thermoelectrics Handbook, Rowe D.M., ed. (CRC Press, Boca Raton, 2005); pp. 115.
30. Koumoto K., Funahashi R., Guilmeau E., Miyazaki Y., Weidenkaff A., Wang Y., and Wan C.: Thermoelectric ceramics for energy harvesting. Ann. Phys. 96, 1 (2012).
31. Ohta H., Sugiura K., and Koumoto K.: Recent progress in oxide thermoelectric materials: p-type Ca3Co4O9 and n-type SrTiO3 . Inorg. Chem. 47, 8429 (2008).
32. Walia S., Balendhran S., Nili H., Zhuiykov S., Rosengarten G., Wang Q.H., Bhaskaran M., Sriram S., Strano M.S., and Kalantar-zadeh K.: Transition metal oxides—Thermoelectric properties. Prog. Mater. Sci. 58, 1443 (2013).
33. Fergus J.W.: Oxide materials for high temperature thermoelectric energy conversion. J. Eur. Ceram. Soc. 32, 525 (2012).
34. Lee S., Bock J.A., Trolier-Mckinstry S., and Randall C.A.: Ferroelectric-thermoelectricity and Mott transition of ferroelectric oxides with high electronic conductivity. J. Eur. Ceram. Soc. 32, 3971 (2012).
35. Mele P.: Nanostructured thin films of thermoelectric oxides. In Oxide Thin Films, Multilayers, and Nanocomposites, Mele P., Endo T., Arisawa S., Li C., and Tsuchiya T., eds. (Springer International Publishing, Cham, 2015); pp. 123155.
36. Liu W., Yan X., Chen G., and Ren Z.: Recent advances in thermoelectric nanocomposites. Nano Energy 1, 42 (2012).
37. Alam H. and Ramakrishna S.: A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy 2, 190 (2013).
38. Pichanusakorn P. and Bandaru P.: Nanostructured thermoelectrics. Mater. Sci. Eng., R 67, 19 (2010).
39. Kanatzidis M.G.: Nanostructured thermoelectrics: The new paradigm? Chem. Mater. 22, 648 (2010).
40. Lan Y., Minnich A.J., Chen G., and Ren Z.: Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv. Funct. Mater. 20, 357 (2010).
41. Dresselhaus M.S., Chen G., Tang M.Y., Yang R.G., Lee H., Wang D.Z., Ren Z.F., Fleurial J.P., and Gogna P.: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043 (2007).
42. Heremans J.P., Jovovic V., Toberer E.S., Saramat A., Kurosaki K., Charoenphakdee A., Yamanaka S., and Snyder G.J.: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554 (2008).
43. Pei Y., Shi X., Lalonde A., Wang H., Chen L., and Snyder G.J.: Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66 (2011).
44. Pei Y., Wang H., and Snyder G.J.: Band engineering of thermoelectric materials. Adv. Mater. 24, 6125 (2012).
45. Rao C. and Raveau B.: Transition metal oxides. Annu. Rev. Phys. Chem. 40, 291 (1989).
46. Tokura Y. and Nagaosa N.: Orbital physics in transition-metal oxides. Science 288, 462 (2000).
47. Bethe H.: Termaufspaltung in Kristallen. Ann. Phys. 395, 133 (1929).
48. Van Benthem K., Elsässer C., and French R.: Bulk electronic structure of SrTiO3: Experiment and theory. J. Appl. Phys. 90, 6156 (2001).
49. Saha S., Sinha T., and Mookerjee A.: Structural and optical properties of paraelectric SrTiO3 . J. Phys.: Condens. Matter 12, 3325 (2000).
50. Wunderlich W., Ohta H., and Koumoto K.: Enhanced effective mass in doped SrTiO3 and related perovskites. Phys. B 404, 2202 (2009).
51. Tufte O.N. and Chapman P.W.: Electron mobility in semiconducting Strontium titanate. Phys Rev. 155, 796 (1967).
52. Frederikse H., Thurber W.R., and Hosler W.R.: Electronic transport in Strontium titanate. Phys Rev. 134, A442 (1964).
53. Frederikse H. and Hosler W.R.: Hall mobility in SrTiO3 . Phys Rev. 161, 822 (1967).
54. Verma A., Kajdos A.P., Cain T.A., Stemmer S., and Jena D.: Intrinsic mobility limiting mechanisms in Lanthanum-doped strontium titanate. Phys. Rev. Lett. 112, 216601 (2014).
55. Mikheev E., Himmetoglu B., Kajdos A.P., Moetakef P., Cain T.A., Van De Walle C.G., and Stemmer S.: Limitations to the room temperature mobility of two- and three-dimensional electron liquids in SrTiO3 . Appl. Phys. Lett. 106, 062102 (2015).
56. Ovsyannikov S.V., Shchennikov V.V., Vorontsov G.V., Manakov A.Y., Likhacheva A.Y., and Kulbachinskii V.A.: Giant improvement of thermoelectric power factor of Bi2Te3 under pressure. J. Appl. Phys. 104, 053713 (2008).
57. Lee S., Yang G., Wilke R., Trolier-Mckinstry S., and Randall C.: Thermopower in highly reduced N-type ferroelectric and related perovskite oxides and the role of heterogeneous nonstoichiometry. Phys. Rev. B: Condens. Matter Mater. Phys. 79, 134110 (2009).
58. Lee S., Wilke R.H.T., Trolier-Mckinstry S., Zhang S., and Randall C.A.: Sr x Ba1−x Nb2O6−δ ferroelectric-thermoelectrics: Crystal anisotropy, conduction mechanism, and power factor. Appl. Phys. Lett. 96, 031910 (2010).
59. Yasukawa M. and Murayama N.: High-temperature thermoelectric properties of the oxide material: Ba1−x Sr x PbO3 (x = 0–0.6). J. Mater. Sci. Lett. 16, 1731 (1997).
60. Yasukawa M. and Murayama N.: A promising oxide material for high-temperature thermoelectric energy conversion: Ba1−x Sr x PbO3 solid solution system. Mater. Sci. Eng., B 54, 64 (1998).
61. Imada M., Fujimori A., and Tokura Y.: Metal-insulator transitions. Rev. Mod. Phys. 70, 1039 (1998).
62. Zaanen J., Sawatzky G.A., and Allen J.W.: Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418 (1985).
63. Beni G.: Thermoelectric power of the narrow-band Hubbard chain at arbitrary electron density: Atomic limit. Phys. Rev. B: Condens. Matter Mater. Phys. 10, 2186 (1974).
64. Mukerjee S.: Thermopower of the Hubbard model: Effects of multiple orbitals and magnetic fields in the atomic limit. Phys. Rev. B: Condens. Matter Mater. Phys. 72, 195109 (2005).
65. Chaikin P.M. and Beni G.: Thermopower in the correlated hopping regime. Phys. Rev. B: Condens. Matter Mater. Phys. 13, 647 (1976).
66. Ohtaki M., Koga H., Tokunaga T., Eguchi K., and Arai H.: Electrical transport properties and high-temperature thermoelectric performance of (Ca0.9M0.1)MnO3 (M = Y, La, Ce, Sm, In, Sn, Sb, Pb, Bi). J. Solid State Chem. 120, 105 (1995).
67. Wang Y., Sui Y., and Su W.: High temperature thermoelectric characteristics of Ca0.9R0.1MnO3 (R = La, Pr, …, Yb). J. Appl. Phys. 104, 093703 (2008).
68. Hébert S., Martin C., Maignan A., Frésard R., Hejtmanek J., and Raveau B.: Large thermopower in metallic oxides: Misfit cobaltites and mangano-ruthenates. Arch., Condens. Matter, arXiv preprint 0110270 (2001).
69. Weber W.J., Griffin C.W., and Bates J.L.: Effects of cation substitution on electrical and thermal transport properties of YCrO3 and LaCrO3 . J. Am. Ceram. Soc. 70, 265 (1987).
70. Hebert S., Klein Y., Maignan A., Hejtmanek J., and Dabrowski B.: Thermopower of ruthenium metallic oxides: Large influence of the spin degeneracy term. Proceedings of 25th International Conference on thermoelectrics, 2006, Vol. 318, ICT '06, 2006.
71. Funahashi R., Matsubara I., Ikuta H., Takeuchi T., Mizutani U., and Sodeoka S.: An oxide single crystal with high thermoelectric performance in air. Jpn. J. Appl. Phys. 39(2), 1127 (2000).
72. Terasaki I.: Cobalt oxides, and Kondo semiconductors: A pseudogap system as a thermoelectric material. Mater. Trans. 42, 951 (2001).
73. Lee M., Viciu L., Li L., Wang Y., Foo M., Watauchi S., Pascal R., Cava R., and Ong N.: Large enhancement of the thermopower in Na x CoO2 at high Na doping. Nat. Mater. 5, 537 (2006).
74. Hébert S., Berthebaud D., Daou R., Bréard Y., Pelloquin D., Guilmeau E., Gascoin F., Lebedev O., and Maignan A.: Searching for new thermoelectric materials: Some examples among oxides, sulfides and selenides. J. Phys.: Condens. Matter 28, 013001 (2015).
75. Sootsman J.R., Chung D-Y., and Kanatzidis M.G.: New and old concepts in thermoelectric materials. Angew. Chem., Int. Ed. 48, 8616 (2009).
76. Wang Y., Rogado N., Cava R., and Ong N.: Spin entropy as the likely source of enhanced thermopower in Na x Co2O4 . Nature 423, 425 (2003).
77. Goodenough J.B.: An interpretation of the magnetic properties of the perovskite-type mixed crystals La1−x Sr x CoO3−δ . J. Phys. Chem. Solids 6, 287 (1958).
78. Terasaki I., Tanaka H., Satake A., Okada S., and Fujii T.: Out-of-plane thermal conductivity of the layered thermoelectric oxide Bi2−x Pb x Sr2Co2O y . Phys. Rev. B: Condens. Matter Mater. Phys. 70, 214106 (2004).
79. Fujii T. and Terasaki I.: Block-layer concept for the layered cobalt oxide: A design for thermoelectric oxides. In Chemistry, Physics, and Materials Science of Thermoelectric Materials, Kanatzidis M.G., Mahanti S.D., and Hogan T.P., eds. (Springer, Boston, 2003); pp. 7187.
80. Schlom D.G., Eckstein J.N., Hellman E.S., Streiffer S.K., Harris J.S., Beasley M.R., Bravman J.C., Geballe T.H., Webb C., Von Dessonneck K.E., and Turner F.: Molecular beam epitaxy of layered Dy–Ba–Cu–O compounds. Appl. Phys. Lett. 53, 1660 (1988).
81. Kwo J., Hong M., Trevor D.J., Fleming R.M., White A.E., Farrow R.C., Kortan A.R., and Short K.T.: In situ epitaxial growth of Y1Ba2Cu3O7−x films by molecular beam epitaxy with an activated oxygen source. Appl. Phys. Lett. 53, 2683 (1988).
82. Spah R.J., Hess H.F., Stormer H.L., White A.E., and Short K.T.: Parameters for in situ growth of high T c superconducting thin films using an oxygen plasma source. Appl. Phys. Lett. 53, 441 (1988).
83. Eckstein J.N. and Bozovic I.: High-temperature superconducting multilayers and heterostructures grown by atomic layer-by-layer molecular beam epitaxy. Annu. Rev. Mater. Sci. 25, 679 (1995).
84. Dijkkamp D., Venkatesan T., Wu X.D., Shaheen S.A., Jisrawi N., Min-Lee Y.H., McLean W.L., and Croft M.: Preparation of Y–Ba–Cu oxide superconductor thin films using pulsed laser evaporation from high T c bulk material. Appl. Phys. Lett. 51, 619 (1987).
85. Ramesh R., Luther K., Wilkens B., Hart D.L., Wang E., Tarascon J.M., Inam A., Wu X.D., and Venkatesan T.: Epitaxial growth of ferroelectric bismuth titanate thin films by pulsed laser deposition. Appl. Phys. Lett. 57, 1505 (1990).
86. Rijnders G., Koster G., Leca V., Blank D.H.A., and Rogalla H.: Imposed layer-by-layer growth with pulsed laser interval deposition. Appl. Surf. Sci. 168, 223 (2000).
87. Poppe U., Schubert J., Arons R.R., Evers W., Freiburg C.H., Reichert W., Schmidt K., Sybertz W., and Urban K.: Direct production of crystalline superconducting thin films of YBa2Cu3O7 By high-pressure oxygen sputtering. Solid State Commun. 66, 661 (1988).
88. Koinuma H., Kawasaki M., Funabashi M., Hasegawa T., Kishio K., Kitazawa K., Fueki K., and Nagata S.: Preparation of superconducting thin films of (La1−x Sr x ) y CuO4−δ by sputtering. J. Appl. Phys. 62, 1524 (1987).
89. Pachaly B., Bruchhaus R., Pitzer D., Huber H., Wersing W., and Koch F.: Pyroelectric properties of lead titanate thin films deposited on Pt-coated Si wafers by multi-target sputtering. Integr. Ferroelectr. 5, 333 (1994).
90. Eom C.B., Sun J.Z., Yamamoto K., Marshall A.F., Luther K.E., Geballe T.H., and Laderman S.S.: In situ grown YBa2Cu3O7−δ thin films from single-target magnetron sputtering. Appl. Phys. Lett. 55, 595 (1989).
91. Ahn C.H., Triscone J-M., Archibald N., Decroux M., Hammond R.H., Geballe T.H., Fischer O., and Beasley M.R.: Ferroelectric field effect in epitaxial thin film oxide SrCuO2/Pb(Zr0.52Ti0.48)O3 heterostructures. Science 269, 373 (1995).
92. Xi X.X., Linker G., Meyer O., Nold E., Obst B., Ratzel F., Smithey R., Strehlau B., Weschenfelder F., and Geerk J.: Superconducting and structural properties of YBaCuO thin films deposited by inverted cylindrical magnetron sputtering. Z. Phys. B: Condens. Matter 74, 13 (1989).
93. Sandstrom R.L., Gallagher W.J., Dinger T.R., Koch R.H., Laibowitz R.B., Kleinsasser A.W., Gambino R.J., Bumble B., and Chisholm M.F.: Reliable single-target sputtering process for high-temperature superconducting films and devices. Appl. Phys. Lett. 53, 444 (1988).
94. Bai G.R., Tsu I-F., Wang A., Foster C.M., Murray C.E., and Dravid V.P.: In situ growth of highly oriented Pb(Zr0.5Ti0.5)O3 thin films by low-temperature metal–organic chemical vapor deposition. Appl. Phys. Lett. 72, 1572 (1998).
95. De Keijser M. and Dormans G.: Chemical vapor deposition of electroceramic thin films. MRS Bull. 21, 37 (1996).
96. Murty M.V.R., Streiffer S.K., Stephenson G.B., Eastman J.A., Bai G.R., Munkholm A., Auciello O., and Thompson C.: In situ x-ray scattering study of PbTiO3 chemical-vapor deposition. Appl. Phys. Lett. 80, 1809 (2002).
97. Okada M., Takai S., Amemiya M., and Tominaga K.: Preparation of c-axis-oriented PbTiO3 thin films by MOCVD under reduced pressure. Jpn. J. Appl. Phys. 28, 1030 (1989).
98. Kwak B.S., Boyd E.P., and Erbil A.: Metal organic chemical vapor deposition of PbTiO3 thin films. Appl. Phys. Lett. 53, 1702 (1988).
99. Schwartz R.W.: Chemical solution deposition of perovskite thin films. Chem. Mater. 9, 2325 (1997).
100. Ohta S., Nomura T., Ohta H., Hirano M., Hosono H., and Koumoto K.: Large thermoelectric performance of heavily Nb-doped SrTiO3 epitaxial film at high temperature. Appl. Phys. Lett. 87, 092108 (2005).
101. Ravichandran J., Siemons W., Oh D-W., Kardel J.T., Chari A., Heijmerikx H., Scullin M.L., Majumdar A., Ramesh R., and Cahill D.G.: High-temperature thermoelectric response of double-doped SrTiO3 epitaxial films. Phys. Rev. B: Condens. Matter Mater. Phys. 82, 165126 (2010).
102. Ohta S., Nomura T., Ohta H., and Koumoto K.: High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J. Appl. Phys. 97, 034106 (2005).
103. Bak T., Nowotny J., Sorrell C.C., Zhou M.F., and Vance E.R.: Charge transport in CaTiO3: II. Thermoelectric power. J. Mater. Sci.: Mater. Electron. 15, 645 (2004).
104. Bak T., Burg T., Nowotny J., and Blennerhassett P.J.: Electrical conductivity and thermoelectric power of CaTiO3 at n–p transition. Adv. Appl. Ceram. 106, 101 (2013).
105. Brahmecha B.G.: Thermoelecric effect in semiconducting barium titanate. Jpn. J. Appl. Phys. 8, 883 (1969).
106. Nasir Khan M., Kim H-T., Minami H., and Uwe H.: Thermoelectric properties of niobium doped hexagonal barium titanate. Mater. Lett. 47, 95 (2001).
107. Kolodiazhnyi T., Petric A., Niewczas M., Bridges C., Safa-Sefat A., and Greedan J.E.: Thermoelectric power, Hall effect, and mobility of n-type BaTiO3 . Phys. Rev. B: Condens. Matter Mater. Phys. 68, 085205 (2003).
108. Ohta H., Kim S., Mune Y., Mizoguchi T., Nomura K., Ohta S., Nomura T., Nakanishi Y., Ikuhara Y., Hirano M., Hosono H., and Koumoto K.: Giant thermoelectric Seebeck coefficient of two-dimensional electron gas in SrTiO3 . Nat. Mater. 6, 129 (2007).
109. Ohta H., Mune Y., Koumoto K., Mizoguchi T., and Ikuhara Y.: Critical thickness for giant thermoelectric Seebeck coefficient of 2DEG confined in SrTiO3/SrTi0.8Nb0.2O3 superlattices. Thin Solid Films 516, 5916 (2008).
110. Ohta H., Huang R., and Ikuhara Y.: Large enhancement of the thermoelectric Seebeck coefficient for amorphous oxide semiconductor superlattices with extremely thin conductive layers. Phys. Status Solidi RRL 2, 105 (2008).
111. Ravichandran J., Yadav A.K., Cheaito R., Rossen P.B., Soukiassian A., Suresha S.J., Duda J.C., Foley B.M., Lee C-H., Zhu Y., Lichtenberger A.W., Moore J.E., Muller D.A., Schlom D.G., Hopkins P.E., Majumdar A., Ramesh R., and Zurbuchen M.A.: Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat. Mater. 13, 168 (2014).
112. Abutaha A.I., Kumar S.R.S., Li K., Dehkordi A.M., Tritt T.M., and Alshareef H.N.: Enhanced thermoelectric figure-of-merit in thermally robust, nanostructured superlattices based on SrTiO3 . Chem. Mater. 27, 2165 (2015).
113. Kerman K., Ramanathan S., Baniecki J.D., Ishii M., Kotaka Y., Aso H., Kurihara K., Schafranek R., and Vailionis A.: Thermopower in quantum confined La-doped SrTiO3 epitaxial heterostructures. Appl. Phys. Lett. 103, 173904 (2013).
114. Abutaha A.I., Sarath Kumar S.R., Mehdizadeh Dehkordi A., Tritt T.M., and Alshareef H.N.: Doping site dependent thermoelectric properties of epitaxial Strontium titanate thin films. J. Mater. Chem. C 2, 9712 (2014).
115. Kumar S.R.S., Barasheed A.Z., and Alshareef H.N.: High temperature thermoelectric properties of strontium titanate thin films with oxygen vacancy and niobium doping. ACS Appl. Mater. Interfaces 5, 7268 (2013).
116. Lee K.H., Ishizaki A., Kim S.W., Ohta H., and Koumoto K.: Preparation and thermoelectric properties of heavily Nb-doped SrO(SrTiO3)1 epitaxial films. J. Appl. Phys. 102, 033702 (2007).
117. Yamamoto M., Ohta H., and Koumoto K.: Thermoelectric phase diagram in a CaTiO3–SrTiO3–BaTiO3 system. Appl. Phys. Lett. 90, 072101 (2007).
118. Baniecki J.D., Ishii M., Aso H., Kobayashi K., Kurihara K., Yamanaka K., Vailionis A., and Schafranek R.: Electronic transport behavior of off-stoichiometric La and Nb doped Sr x Ti y O3−δ epitaxial thin films and donor doped single-crystalline SrTiO3 . Appl. Phys. Lett. 99, 232111 (2011).
119. Jalan B. and Stemmer S.: Large Seebeck coefficients and thermoelectric power factor of La-doped SrTiO3 thin films. Appl. Phys. Lett. 97, 042106 (2010).
120. Cain T.A., Kajdos A.P., and Stemmer S.: La-doped SrTiO3 films with large cryogenic thermoelectric power factors. Appl. Phys. Lett. 102, 182101 (2013).
121. Oh D-W., Ravichandran J., Liang C-W., Siemons W., Jalan B., Brooks C.M., Huijben M., Schlom D.G., Stemmer S., Martin L.W., Majumdar A., Ramesh R., and Cahill D.G.: Thermal conductivity as a metric for the crystalline quality of SrTiO3 epitaxial layers. Appl. Phys. Lett. 98, 221904 (2011).
122. Wiedigen S., Kramer T., Feuchter M., Knorr I., Nee N., Hoffmann J., Kamlah M., Volkert C.A., and Jooss C.: Interplay of point defects, biaxial strain, and thermal conductivity in homoepitaxial SrTiO3 thin films. Appl. Phys. Lett. 100, 061904 (2012).
123. Schlom D.G., Chen L.Q., Pan X., Schmehl A., and Zurbuchen M.A.: A thin film approach to engineering functionality into oxides. J. Am. Ceram. Soc. 91, 2429 (2008).
124. Brooks C.M., Kourkoutis L.F., Heeg T., Schubert J., Muller D.A., and Schlom D.G.: Growth of homoepitaxial SrTiO3 thin films by molecular-beam epitaxy. Appl. Phys. Lett. 94, 162905 (2009).
125. Breckenfeld E., Wilson R., Karthik J., Damodaran A.R., Cahill D.G., and Martin L.W.: Effect of growth induced (non)stoichiometry on the structure, dielectric response, and thermal conductivity of SrTiO3 thin films. Chem. Mater. 24, 331 (2012).
126. Choi W.S., Yoo H.K., and Ohta H.: Polaron transport and thermoelectric behavior in La-doped SrTiO3 thin films with elemental vacancies. Adv. Funct. Mater. 25, 799 (2015).
127. Robertson J. and Clark S.J.: Limits to doping in oxides. Phys. Rev. B: Condens. Matter Mater. Phys. 83, 075205 (2011).
128. Ertekin E., Srinivasan V., Ravichandran J., Rossen P.B., Siemons W., Majumdar A., Ramesh R., and Grossman J.C.: Interplay between intrinsic defects, doping, and free carrier concentration in SrTiO3 thin films. Phys. Rev. B: Condens. Matter Mater. Phys. 85, 195460 (2012).
129. Janotti A., Jalan B., Stemmer S., and Van De Walle C.G.: Effects of doping on the lattice parameter of SrTiO3 . Appl. Phys. Lett. 100, 262104 (2012).
130. Janotti A., Varley J.B., Choi M., and Van De Walle C.G.: Vacancies and small Polarons in SrTiO3 . Phys. Rev. B: Condens. Matter Mater. Phys. 90, 085202 (2014).
131. Sarath Kumar S.R., Abutaha A.I., Hedhili M.N., and Alshareef H.N.: Modeling the transport properties of epitaxially grown thermoelectric oxide thin films using spectroscopic ellipsometry. Appl. Phys. Lett. 100, 052110 (2012).
132. Krockenberger Y., Fritsch I., Cristiani G., Matveev A., Alff L., Habermeier H-U., and Keimer B.: Epitaxial growth of Na x CoO2 thin films by pulsed-laser deposition. Appl. Phys. Lett. 86, 191913 (2005).
133. Yu L., Gu L., Wang Y., Zhang P.X., and Habermeier H-U.: Epitaxial layered cobaltite Na x CoO2 thin films grown on planar and vicinal cut substrates. J. Cryst. Growth 328, 34 (2011).
134. Venimadhav A., Ma Z., Li Q., Soukiassian A., Xi X., Schlom D., Arroyave R., Liu Z., Lee M., and Ong N.: Thermoelectric properties of epitaxial and topotaxial Na x CoO2 thin films. Mater. Res. Soc. Symp. Proc. 886, 0886 (2006).
135. Brinks P., Heijmerikx H., Hendriks T.A., Rijnders G., and Huijben M.: Achieving chemical stability in thermoelectric Na x CoO2 thin films. RSC Adv. 2, 6023 (2012).
136. Brinks P., Kuiper B., Breckenfeld E., Koster G., Martin L.W., Rijnders G., and Huijben M.: Enhanced thermoelectric power factor of Na x CoO2 thin films by structural engineering. Adv. Energy Mater. 4, 1301927 (2014).
137. Son J.Y., Kim B.G., and Cho J.H.: Kinetically controlled thin-film growth of layered β- and γ-Na x CoO2 cobaltate. Appl. Phys. Lett. 86, 221918 (2005).
138. Zhang X.P., Xiao Y.S., Zhou H., Xie B.T., Yang C.X., and Zhao Y.G.: Surface morphology, structure and transport property of Na x CoO2 thin films grown by pulsed laser deposition. Mater. Sci. Forum 475–479, 3807 (2005).
139. Buršík J., Soroka M., Knížek K., Hirschner J., Levinský P., and Hejtmánek J.: Oriented thin films of Na0.6CoO2 and Ca3Co4O9 deposited by spin-coating method on polycrystalline substrate. Thin Solid Films 603, 400 (2016).
140. Venimadhav A., Soukiassian A., Tenne D.A., Li Q., Xi X.X., Schlom D.G., Arroyave R., Liu Z.K., Sun H.P., Pan X., Lee M., and Ong N.P.: Structural and transport properties of epitaxial Na x CoO2 thin films. Appl. Phys. Lett. 87, 172104 (2005).
141. Wang S., Venimadhav A., Guo S., Chen K., Li Q., Soukiassian A., Schlom D.G., Katz M.B., Pan X.Q., Wong-Ng W., Vaudin M.D., and Xi X.X.: Structural and thermoelectric properties of Bi2Sr2Co2O y thin films on LaAlO3 (100) and fused silica substrates. Appl. Phys. Lett. 94, 022110 (2009).
142. Wang S., Chen S., Yan G., Liu F., Dai S., Wang J., Yu W., and Fu G.: Fabrication and thermoelectric properties of C-axis oriented nanocrystalline Bi2Sr2Co2O y thin films. Thin Solid Films 534, 168 (2013).
143. Ravichandran J., Yadav A.K., Siemons W., McGuire M.A., Wu V., Vailionis A., Majumdar A., and Ramesh R.: Size effects on thermoelectricity in a strongly correlated oxide. Phys. Rev. B: Condens. Matter Mater. Phys. 85, 085112 (2012).
144. Rivas-Murias B., Manuel Vila-Fungueiriño J., and Rivadulla F.: High quality thin films of thermoelectric misfit cobalt oxides prepared by a chemical solution method. Sci. Rep. 5, 11889 (2015).
145. Tsukada I., Terasaki I., Hoshi T., Yura F., and Uchinokura K.: Thin film growth of layered cobalt-oxide Bi2Sr3Co2O9+δ nearly isomorphic to Bi2Sr2CaCu2O8+δ superconductors. J. Appl. Phys. 76, 1317 (1994).
146. Sakai A., Kanno T., Yotsuhashi S., Okada S., and Adachi H.: Preparation of metastable Sr3Co4O9 epitaxial thin films with controlled orientation and their anisotropic thermoelectric properties. J. Appl. Phys. 99, 093704 (2006).
147. Kanno T., Yotsuhashi S., and Adachi H.: Anisotropic thermoelectric properties in layered cobaltite A x CoO2 (A = Sr and Ca) thin films. Appl. Phys. Lett. 85, 739 (2004).
148. Yan G., Bai Z., Wang S., Sun L., Wang J., and Fu G.: Dependence of oxygen content on transverse thermoelectric effect in tilted Bi2Sr2Co2O Y thin films. Appl. Opt. 53, 4211 (2014).
149. Shu-Fang W., Guo-Ying Y., Shan-Shan C., Zi-Long B., Jiang-Long W., Wei Y., and Guang-Sheng F.: Effect of microstructure on the thermoelectric properties of CSD-grown Bi2Sr2Co2O y thin films. Chin. Phys. B 22, 037302 (2013).
150. Zhu X., Shi D., Dou S., Sun Y., Li Q., Wang L., Li W., Yeoh W., Zheng R., and Chen Z.: (00l)-oriented Bi2Sr2Co2O y and Ca3Co4O9 films: Self-assembly orientation and growth mechanism by chemical solution deposition. Acta Mater. 58, 4281 (2010).
151. Weidenkaff A., Robert R., Aguirre M., Bocher L., Lippert T., and Canulescu S.: Development of thermoelectric oxides for renewable energy conversion technologies. Renewable Energy 33, 342 (2008).
152. Alfaruq D.S., Otal E.H., Aguirre M.H., Populoh S., and Weidenkaff A.: Thermoelectric properties of CaMnO3 films obtained by soft chemistry synthesis. J. Mater. Res. 27, 985 (2012).
153. Jha P., Sands T.D., Cassels L., Jackson P., Favaloro T., Kirk B., Zide J., Xu X., and Shakouri A.: Cross-plane electronic and thermal transport properties of p-type La0.67Sr0.33MnO3/LaMnO3 perovskite oxide metal/semiconductor superlattices. J. Appl. Phys. 112, 063714 (2012).
154. Jha P., Sands T.D., Jackson P., Bomberger C., Favaloro T., Hodson S., Zide J., Xu X., and Shakouri A.: Cross-plane thermoelectric transport in p-type La0.67Sr0.33MnO3/LaMnO3 oxide metal/semiconductor superlattices. J. Appl. Phys. 113, 193702 (2013).
155. Banerjee A.N., Maity R., Ghosh P.K., and Chattopadhyay K.K.: Thermoelectric properties and electrical characteristics of sputter-deposited p-CuAlO2 thin films. Thin Solid Films 474, 261 (2005).
156. Robert R., Aguirre M.H., Bocher L., Trottmann M., Heiroth S., Lippert T., Döbeli M., and Weidenkaff A.: Thermoelectric properties of LaCo1−x Ni x O3 polycrystalline samples and epitaxial thin films. Solid State Sci. 10, 502 (2008).
157. Cahill D.G.: Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119 (2004).
158. Cahill D.G.: Thermal conductivity measurement from 30 to 750 K: The 3ω method. Rev. Sci. Instrum. 61, 802 (1990).
159. Cahill D.G., Ford W.K., Goodson K.E., Mahan G.D., Majumdar A., Maris H.J., Merlin R., and Phillpot S.R.: Nanoscale thermal transport. J. Appl. Phys. 93, 793 (2002).
160. Cahill D.G., Braun P.V., Chen G., Clarke D.R., Fan S., Goodson K.E., Keblinski P., King W.P., Mahan G.D., Majumdar A., Maris H.J., Phillpot S.R., Pop E., and Shi L.: Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014).
161. Ravichandran J., Kardel J.T., Scullin M.L., Bahk J.H., Heijmerikx H., Bowers J.E., and Majumdar A.: An apparatus for simultaneous measurement of electrical conductivity and thermopower of thin films in the temperature range of 300–750 K. Rev. Sci. Instrum. 82, 015108 (2011).
162. Burkov A.T., Heinrich A., Konstantinov P.P., Nakama T., and Yagasaki K.: Experimental set-up for thermopower and resistivity measurements at 100–1300 K. Meas. Sci. Technol. 12, 264 (2001).
163. Boffoué O., Jacquot A., Dauscher A., Lenoir B., and Stölzer M.: Experimental setup for the measurement of the electrical resistivity and thermopower of thin films and bulk materials. Rev. Sci. Instrum. 76, 053907 (2005).
164. Ravichandran J., Siemons W., Scullin M.L., Mukerjee S., Huijben M., Moore J.E., Majumdar A., and Ramesh R.: Tuning the electronic effective mass in double-doped SrTiO3 . Phys. Rev. B: Condens. Matter Mater. Phys. 83, 035101 (2011).
165. Ravichandran J., Siemons W., Heijmerikx H., Huijben M., Majumdar A., and Ramesh R.: An epitaxial transparent conducting perovskite oxide: Double-Doped SrTiO3 . Chem. Mater. 22, 3983 (2010).
166. Sugiura K., Ohta H., and Koumoto K.: Thermoelectric performance of epitaxial thin films of layered cobalt oxides grown by reactive solid-phase epitaxy with topotactic ion-exchange methods. Int. J. Appl. Ceram. Technol. 4, 308 (2007).
167. Yu C., Scullin M.L., Huijben M., Ramesh R., and Majumdar A.: Thermal conductivity reduction in oxygen-deficient strontium titanates. Appl. Phys. Lett. 92, 191911 (2008).
168. Brooks C.M., Wilson R.B., Schäfer A., Mundy J.A., Holtz M.E., Muller D.A., Schubert J., Cahill D.G., and Schlom D.G.: Tuning thermal conductivity in Homoepitaxial SrTiO3 films via defects. Appl. Phys. Lett. 107, 051902 (2015).
169. Foley B.M., Brown-Shaklee H.J., Duda J.C., Cheaito R., Gibbons B.J., Medlin D., Ihlefeld J.F., and Hopkins P.E.: Thermal conductivity of nano-grained SrTiO3 thin films. Appl. Phys. Lett. 101, 231908 (2012).
170. Mune Y., Ohta H., Koumoto K., Mizoguchi T., and Ikuhara Y.: Enhanced Seebeck coefficient of quantum-confined electrons in SrTiO3/SrTi0.8Nb0.2O3 superlattices. Appl. Phys. Lett. 91, 192105 (2007).
171. Choi W.S., Ohta H., and Lee H.N.: Thermopower enhancement by fractional layer control in 2D oxide superlattices. Adv. Mater. 26, 6701 (2014).
172. Ohtomo A. and Hwang H.: A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423 (2004).
173. Pallecchi I., Codda M., Galleani d'Agliano E., Marré D., Caviglia A.D., Reyren N., Gariglio S., and Triscone J-M.: Seebeck effect in the conducting LaAlO3/SrTiO3 interface. Phys. Rev. B: Condens. Matter Mater. Phys. 81, 085414 (2010).
174. Jost A., Guduru V.K., Wiedmann S., Maan J.C., Zeitler U., Wenderich S., Brinkman A., and Hilgenkamp H.: Transport and thermoelectric properties of the LaAlO3/SrTiO3 interface. Phys. Rev. B: Condens. Matter Mater. Phys. 91, 045304 (2015).
175. Pallecchi I., Telesio F., Li D., Fête A., Gariglio S., Triscone J-M., Filippetti A., Delugas P., Fiorentini V., and Marré D.: Giant oscillating thermopower at oxide interfaces. Nature Commun. 6, 6678 (2015).
176. Pallecchi I., Telesio F., Marré D., Li D., Gariglio S., Triscone J-M., and Filippetti A.: Large phonon-drag enhancement induced by narrow quantum confinement at the LaAlO3/SrTiO3 interface. Phys. Rev. B: Condens. Matter Mater. Phys. 93, 195309 (2016).
177. Cain T.A., Lee S., Moetakef P., Balents L., Stemmer S., and James Allen S.: Seebeck coefficient of a quantum confined, high-electron-density electron gas in SrTiO3 . Appl. Phys. Lett. 100, 161601 (2012).
178. Brinks P., Rijnders G., and Huijben M.: Size effects on thermoelectric behavior of ultrathin Na x CoO2 films. Appl. Phys. Lett. 105, 193902 (2014).
179. Simkin M. and Mahan G.: Minimum thermal conductivity of superlattices. Phys. Rev. Lett. 84, 927 (2000).
180. Schooley J.F., Hosler W.R., and Cohen M.L.: Superconductivity in semiconducting SrTiO3 . Phys. Rev. Lett. 12, 474 (1964).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 45
Total number of PDF views: 722 *
Loading metrics...

Abstract views

Total abstract views: 953 *
Loading metrics...

* Views captured on Cambridge Core between 14th November 2016 - 21st November 2017. This data will be updated every 24 hours.