Skip to main content
×
Home
    • Aa
    • Aa

Thermomechanical behavior at the nanoscale and size effects in shape memory alloys

  • Jose San Juan (a1), Maria L. Nó (a2) and Christopher A. Schuh (a3)
Abstract
Abstract

Shape memory alloys (SMA) undergo reversible martensitic transformation in response to changes in temperature or applied stress, resulting in the properties of superelasticity and shape memory. At present, there is high scientific and technological interest to develop these properties at small scales and apply SMA as sensors and actuators in microelectromechanical system technologies. To study the thermomechanical properties of SMA at micro and nanoscales, instrumented nanoindentation is widely used to conduct nanopillar compression tests. By using this technique, superelasticity and shape memory at the nanoscale have been demonstrated in micro and nanopillars of Cu–Al–Ni SMA. However, the martensitic transformation seems to exhibit different behavior at small scales, and a size effect on superelasticity has been recently reported. In this study, we provide an overview of the thermomechanical properties of Cu–Al–Ni SMA at the nanoscale, with special emphasis on size effects. Finally, these size effects are discussed in light of the microscopic mechanisms controlling the martensitic transformation at the nanoscale.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: jose.sanjuan@ehu.es
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. C. Liu : Foundations of MEMS (Pearson Prentice Hall, Upper Saddle River, NJ, 2006).

2. K. Worden , W.A. Bullongh , and J. Hayvood (Eds.): Smart Technologies (World Scientific, NJ, 2003).

3. M. Kohl : Shape Memory Microactuators. (Springer-Verlag, Berlin, 2004).

4. K. Bhattacharya and R.D. James : The material is the machine. Science 307, 53 (2005).

5. J.V. Humbeeck : Shape memory alloys: A material and a technology. Adv. Eng. Mater. 3, 837 (2001).

7. A.D. Romig , M.T. Dugger , and P.J. McWhorther : Materials issues in microelectromechanical devices: Science, engineering, manufacturability and reliability. Acta Mater. 51, 5837 (2003).

9. D.M. Tanner , T.B. Parson , A.D. Corwin , J.A. Walraven , J.W. Wittwer , B.L. Boyce , and S.R. Winzer : Science-based MEMS reliability methodology. Microelectron. Reliab. 47, 1806 (2007).

10. J. San Juan and M.L. : Damping behavior during martensitic transformation in shape memory alloys. J. Alloy. Comp. 355, 65 (2003).

11. T. Waitz , V. Kazykhanov , and H.P. Karnthaler : Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater. 52, 137 (2004).

12. Y.Q. Fu , S. Zhang , M.J. Wu , W.M. Huang , H.J. Du , J.K. Luo , A.J. Flewitt , and W.I. Milne : On the lower thickness boundary of sputtered TiNi films for shape memory application. Thin Solid Films 515, 80 (2006).

14. A. Ibarra , D. Caillard , J. San Juan , and M.L. : Martensite nucleation on dislocations in Cu-Al-Ni shape memory alloys. Appl. Phys. Lett. 90, 101907 (2007).

15. M.L. , A. Ibarra , D. Caillard , and J. San Juan : Stress-induced phase transformations studied by in-situ transmission electron microscopy. J. of Phys. Conf. Ser. 240, 012002 (2010).

16. M.L. , A. Ibarra , D. Caillard , and J. San Juan : Quantitative analysis of stress-induced martensites by in-situ transmission electron microscopy superelastic tests in Cu-Al-Ni shape memory alloys. Acta Mater. 58, 6181 (2010).

18. A.C. Fischer-Cripps : Nanoindentation. (Springer, New York, 2004).

19. C.A. Schuh : Nanoindentation studies of materials. Mater. Today 9, 32 (2006).

20. W. Ni , Y.T. Cheng , and D.S. Grummon : Microscopic superelastic behavior of a nickel-titanium alloy under complex loading conditions. Appl. Phys. Lett. 82, 2811 (2003).

21. X.G. Ma and K. Komvopoulos : Nanoscale pseudoelastic behavior of indented titanium-nickel films. Appl. Phys. Lett. 83, 3773 (2003).

22. G.A. Shaw , D.D. Stone , A.D. Johnson , A.B. Ellis , and W.C. Crone : Shape memory effect in nanoindentation of nickel–titanium thin films. Appl. Phys. Lett. 83, 257 (2003).

23. X.G. Ma and K. Komvopoulos : Pseudoelasticity of shape-memory titanium-nickel films subjected to dynamic nanoindentation. Appl. Phys. Lett. 84, 4274 (2004).

24. K. Komvopoulos and X.G. Ma : Pseudoelasticity of martensitic titanium-nickel shape-memory films studied by in situ heating nanoindentation and transmission electron microscopy. Appl. Phys. Lett. 87, 263108 (2005).

25. G.A. Shaw , J.S. Trethewey , A.D. Johnson , W.J. Drugan , and W.C. Crone : Thermomechanical high-density data storage in a metallic material via the shape-memory effect. Adv. Mater. 17, 1123 (2005).

26. C. Liu , Y. Zhao , Q. Sun , T. Yu , and Z. Cao : Characteristic of microscopic shape memory effect in CuAlNi alloy by nanoindentation. J. Mater. Sci. 40, 1501 (2005).

27. S. Rajagopalan , A.L. Little , M.A.M. Bourke , and R. Vaidyanathan : Elastic modulus of shape-memory NiTi from in situ neutron diffraction during macroscopic loading, instrumented nanoindentation, and extensometry. Appl. Phys. Lett. 86, 081901 (2005).

28. C.P. Frick , T.W. Lang , K. Spark , and K. Gall : Stress-induced martensite transformations and shape memory at nanometer scales. Acta Mater. 54, 2223 (2006).

29. A.J. Muir Wood and T.W. Clyne : Measurement and modelling of the nanoindentation response of shape memory alloys. Acta Mater. 54, 5607 (2006).

30. H.S. Zhang and K. Komvopoulos : Nanoscale pseudoelasticity of single-crystal Cu-Al-Ni shape-memory alloys induced by cyclic nanoindentation. J. Mater. Sci. 41, 5021 (2006).

31. Y. Zhang , Y.T. Cheng , and D.S. Grummon : Shape memory surfaces. Appl. Phys. Lett. 89, 041912 (2006).

32. W.C. Crone , H. Brock , and A. Creuziger : Nanoindentation and microindentation of CuAlNi shape memory alloy. Exp. Mech. 47, 133 (2007).

33. A.J. Muir Wood , S. Sanjabi , Y.Q. Fu , Z.H. Barber , and T.W. Clyne : Nanoindentation of binary and ternary Ni-Ti-based shape memory alloy thin films. Surf. Coat. Tech. 202, 3115 (2008).

34. D.P. Cole , H.A. Bruck , and A.L. Roytburd : Nanoidentation studies of graded shape memory alloy thin films processed using diffusion modification. J. Appl. Phys. 103, 064315 (2008).

35. H. Zheng , J. Rao , J. Pfetzing , J. Frenzel , C. Somsen , and G. Eggeler : TEM observation of stress-induced martensite after nanoindentation of pseudoelastic Ti50Ni48Fe2. Scr. Mater. 58, 743 (2008).

36. A. Dwivedi , T. Wyrobek , O.L. Warren , J. Hattrick-Simpers , O.O. Famodu , and I. Takeuchi : High-throughput screening of shape memory alloy thin-film spreads using nanoindentation. J. Appl. Phys. 104, 073501 (2008).

37. D.P. Cole , H. Jin , W.Y. Lu , A.L. Roytburd , and H.A. Bruck : Reversible nanoscale deformation in compositionally graded shape memory alloy films. Appl. Phys. Lett. 94, 193114 (2009).

38. J. Pfetzing-Micklich , M.F.X. Wagner , R. Zarnetta , J. Frenzel , G. Eggeler , A.E. Markaki , J. Wheeler , and T.W. Clyne : Nanoindentation of a pseudoelastic NiTiFe shape memory alloy. Adv. Eng. Mater. 12, 13 (2010).

39. X. Huang , J. San Juan , and A.G. Ramirez : Evolution of phase transformation behavior and mechanical properties with crystallization in NiTi thin films. Scr. Mater. 63, 16 (2010).

40. M.D. Uchic , D.M. Dimiduk , J.N. Florando , and W.D. Nix : Sample dimensions influence strength and crystal plasticity. Science. 305, 986 (2004).

41. J.R. Greer , W.C. Oliver , and W.D. Nix : Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).

42. C.P. Frick , S. Orso , and E. Arzt : Loss of superelasticity in nickel-titanium sub-micron compression pillars. Acta Mater. 55, 3845 (2007).

43. J. San Juan , M.L. , and C.A. Schuh : Superelasticity and shape memory in microand nanometer-scale pillars. Adv. Mater. 20, 272 (2008).

44. C.P. Frick , B.G. Clark , S. Orso , P.S. Ribic , and E. Arzt : Orientation-independent pseudoelasticity in small-scale NiTi compression pillars. Scr. Mater. 59, 7 (2008).

45. D.M. Norfleet , P.M. Sarosi , S. Manchiraju , M.F.X. Wagner , M.D. Uchic , P.M. Anderson , and M.J. Mills : Transformation-induced plasticity during pseudoelastic deformation in Ni-Ti microcrystals. Acta Mater. 57, 3549 (2009).

46. J. San Juan , M.L. , and C.A. Schuh : Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat. Nanotechnol. 4, 415 (2009).

47. J. Ye , R.K. Mishra , A.R. Pelton , and A.M. Minor : Direct observation of the NiTi martensitic phase transformation in nanoscale volumes. Acta Mater. 58, 490 (2010).

49. V. Recarte , R.B. Perez-Saez , E.H. Bocanegra , M.L. , and J. San Juan : Influence of Al and Ni concentration on the martensitic transformation in Cu-Al-Ni sahpe memory alloys. Metall. Mater. Trans. A. 33, 2581 (2002).

50. H. Horikawa , S. Ichinose , K. Morii , S. Miyazaki , and K. Otsuka : Orientation dependence of β11’ stress-induced martensitic transformation in a Cu-Al-Ni alloy. Metall. Trans. A 19, 915 (1988).

51. H. Zhang , B.E. Schuster , Q. Wei , and K.T. Ramesh : The design of accurate micro-compression experiments. Scr. Mater. 54, 181 (2006).

52. C.A. Schuh , J.K. Mason , and A.C. Lund : Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4, 617 (2005).

53. A. Ibarra , J. San Juan , E.H. Bocanegra , and M.L. : Evolution of microstructure and thermomechanical properties during superelastic compression cycling in Cu-Al-Ni single crystals. Acta Mater. 55, 4789 (2007).

54. J. Rodriguez-Aseguinolaza , I. Ruiz-Larrea , M.L. , A. Lopez-Echarri , and J. San Juan : A new quantitative approach to the thermoelastic martensitic transformation: The density of elastic states. Acta Mater. 56, 6283 (2008).

55. J. Rodriguez-Aseguinolaza , I. Ruiz-Larrea , M.L. , A. Lopez-Echarri , and J. San Juan : Thermodynamic study of the temperature memory effects in Cu-Al-Ni shape memory alloys. J. Appl. Phys. 107, 083518 (2010).

56. Y. Chen and C.A. Schuh : Size effects in shape memory alloy microwires. Acta Mater. 59, 537 (2011).

58. A. Ishida and M. Sato : Thickness effect on shape memory behavior of Ti-50.0at.%Ni thin film. Acta Mater. 51, 5571 (2003).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 4
Total number of PDF views: 38 *
Loading metrics...

Abstract views

Total abstract views: 130 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 29th May 2017. This data will be updated every 24 hours.