Skip to main content

Thermomechanical properties dependence on chain length in bulk polyethylene: Coarse-grained molecular dynamics simulations

  • Junhua Zhao, Shijo Nagao and Zhiliang Zhang (a1)

Mechanical and thermodynamical properties of bulk polyethylene have been scrutinized using coarse-grained (CG) molecular dynamics simulations. Entangled but cross-link-free polymer clusters are generated by the semicrystalline lattice method for a wide range chain length of alkane modeled by CG beads, and tested under compressive and tensile stress with various temperature and strain rates. It has been found that the specific volume and volumetric thermal expansion coefficient decrease with the increase of chain length, where the specific volume is a linear function of the bond number to all bead number ratios, while the thermal expansion coefficient is a linear rational function of the ratio. Glass-transition temperature, however, does not seem to be sensitive to chain length. Yield stress under tension and compression increases with the increase of the bond number to all bead number ratio and strain rate as well as with decreasing temperature. The correlation found between chain length and these physical parameters suggests that the ratio dominates the mechanical properties of the present CG-modeled linear polymer material.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Takeuchi H., Roe R.J.Molecular dynamics simulation of local chain motion in bulk amorphous polymers. I. Dynamics above the glass transition. J. Chem. Phys. 94, 7446 (1991)
2.Pant P.V.K., Han J., Smith G.D., Boyd R.H.A molecular dynamics simulation of polyethylene. J. Chem. Phys. 99, 597 (1993)
3.Boyd R.H., Gee R.H., Han J., Jin Y.Conformational dynamics in bulk polyethylene: A molecular dynamics simulation study. J. Chem. Phys. 101, 788 (1994)
4.Hanscomb J.R., Kaahwa Y.High-temperature electrical conduction in polyethylene-terephthalate. II. Analysis. J. Phys. D: Appl. Phys. 12, 579 (1979)
5.Hanscomb J.R., Kaahwa Y.High-field transient conduction in PET in the microsecond-millisecond time range. J. Phys. D: Appl. Phys. 11, 725 (1978)
6.Donald A.M., Kramer E.J.Effect of strain history on craze microstructure. Polymer (Guildf.) 23, 457 (1982)
7.Donald A.M., Kramer E.J., Bubeck R.A.The entanglement network and craze micromechanics in glassy polymers. J. Polym. Sci., Part B: Polym. Phys. 20, 1129 (1982)
8.G'sell C., Hiver J.M., Dahouin A., Souahi A.Video-controlled tensile testing of polymers and metals beyond the necking point. J. Mater. Sci. 27, 5031 (1992)
9.Arruda E.M., Boyce M.C.Evolution of plastic anisotropy in amorphous polymers during finite straining. Int. J. Plast. 9, 697 (1993)
10.Boyce M.C., Arruda E.M., Jayachandran R.The large strain compression, tension, and simple shear of polycarbonate. Polym. Eng. Sci. 34, 716 (1994)
11.van Melick H.G.H., Govaert L.E., Meijer H.E.H.On the origin of strain hardening in glassy polymers. Polymer (Guildf.) 44, 2493 (2003)
12.He J.Y., Zhang Z.L., Midttun M., Fonnum G., Modahl G.I., Kristiansen H., Redford K.Size effect on mechanical properties of micron-sized PS-DVB polymer particles. Polymer (Guildf.) 49, 3993 (2008)
13.Eyring H.Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283 (1936)
14.Robertson R.E.Theory for the plasticity of glassy polymers. J. Chem. Phys. 44, 3950 (1966)
15.Argon A.S.A theory for the low-temperature plastic deformation of glassy polymers. Philos. Mag. 28, 839 (1973)
16.Wu P.D., van der Giessen E.On improved network models for rubber elasticity and their applications to orientation in glassy polymers. J. Mech. Phys. Solids 41, 427 (1993)
17.Riby D., Roe R.J.Molecular dynamics simulation of polymer liquid and glass. II. Short range order and orientation correlation. J. Chem. Phys. 89, 5280 (1988)
18.Whitten P.G., Brown H.R.Polymer entanglement density and its influence on interfacial friction. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 76, 026101 (2007)
19.Lyulin A.V., Balabaev N.K., Michels M.A.J.Correlated segmental dynamics in amorphous atactic polystyrene: A molecular dynamics simulation study. Macromolecules 35, 9595 (2002)
20.van der Vegt N.F.A., Briels W.J., Wessling M., Strathmann H.Free energy calculations of small molecules in dense amorphous polymers. Effect of the initial guess configuration in molecular dynamics studies. J. Chem. Phys. 105, 8849 (1996)
21.Sok R.M., Berendsen H.J.C.Time-dependent self-diffusion in a semidilute suspension of Brownian particles. J. Chem. Phys. 96, 4699 (1992)
22.Zhang F.Molecular-dynamics simulation of solitary waves in polyethylene. Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdisciplin. Top. 56, 6077 (1997)
23.Capaldi F.M., Boyce M.C., Rutledge G.C.Molecular response of a glassy polymer to active deformation. Polymer (Guildf.) 45, 1391 (2004)
24.Nielsen S., Lopez C.F., Srinivas G., Klein M.L.A coarse grain model for n-alkanes parameterized from surface tension data. J. Chem. Phys. 119, 7043 (2003)
25.Louis A.A.Beware of density dependent pair potentials. J. Phys. Condens. Matter 14, 9187 (2002)
26.Akkermans R.L.C., Briels W.J.A structure-based coarse-grained model for polymer melts. J. Chem. Phys. 114, 1020 (2001)
27.Zhang M., Müller-Plathe F.The Soret effect in dilute polymer solutions: Influence of chain length, chain stiffness and solvent quality. J. Chem. Phys. 125, 124903 (2006)
28.Di Matteo A., Müller-Plathe F., Milano G.From mesoscale back to atomistic models: A fast reverse-mapping procedure for vinyl polymer chains. J. Phys. Chem. B 111, 2765 (2007)
29.Terao T., Lussetti E., Müller-Plathe F.Non-equilibrium molecular dynamics methods for computing the thermal conductivity: Application to amorphous polymers. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 75, 057701 (2007)
30.Fermeglia M., Pricl S.Multiscale modeling for polymer systems of industrial interest. Prog. Org. Coat. 58, 187 (2007)
31.Pricl S., Fermeglia M., Ferrone M., Asquini A.Scaling properties in the molecular structure of three-dimensional, nanosized phenylene-based dendrimers as studied by atomistic molecular dynamics simulations. Carbon 41, 2269 (2003)
32.Wick C.D., Theodorou D.N.Connectivity-altering Monte Carlo simulations of the end group effects on volumetric properties for poly(ethylene oxide). Macromolecules 37, 7026 (2004)
33.Faulon J.L.Stochastic generator of chemical structure. (4) Building polymeric systems with specified properties. J. Comput. Chem. 22, 580 (2001)
34.Shinoda W., Devane R., Klein M.L.Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants. Mol. Simul. 33, 27 (2007)
35.Beredsen H.J.C., Postma J.P.M., van Gunsteren W.F., Dinola A., Haak J.R.Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684 (1984)
36.Takeuchi H., Roe R.J.Molecular dynamics simulation of local chain motion in bulk amorphous polymers. II. Dynamics at glass transition. J. Chem. Phys. 94, 7458 (1991)
37.Plimpton S.Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995)
38.Rudek M.M., Fisk J.A., Chakarov V.M., Katz J.L.Condensation of a supersaturated vapor. XII. The homogeneous nucleation of the n-alkanes. J. Chem. Phys. 105, 4707 (1996)
39.Laso M., Perpete E.A.Multiscale Modelling of Polymer Properties (Elsevier, Amsterdam, The Netherlands 2006)3145
40.Dee G.T., Ougizawa T., Walsh D.J.The pressure-volume-temperature properties of polyethylene, poly(dimethyl siloxane), poly(ethylene glycol) and poly(propylene glycol) as a function of molecular weight. Polymer (Guildf.) 33, 3462 (1992)
41.Turcotte D.L., Schubert G.Geodynamics 2nd ed (Cambridge University Press, Cambridge 2002)
42.Han J., Gee R.H., Boyd R.H.Glass transition temperatures of polymers from molecular dynamics simulations. Macromolecules 27, 7781 (1994)
43.Gee R.H., Boyd R.H.The role of the torsional potential in relaxation dynamics: A molecular dynamics study of polyethylene. Comput. Theor. Polym. Sci. 8, 93 (1998)
44.Angell C.A., Clarke J.H.R., Woodcock L.V.Advances in Chemical Physics Vol. 48 edited by I. Prigogine and S.A. Rice (Wiley, New York 1981)397
45.Signorini F., Barrat J.L., Klein M.L.Structural relaxation and dynamical correlations in a molten state near the liquid–glass transition: A molecular dynamics study. J. Chem. Phys. 92, 1294 (1990)
46.Hasan O.A., Boyce M.C.Energy storage during inelastic deformation of glassy polymers. Polymer (Guildf.) 34, 5085 (1993)
47.Walley S.M., Field J.E., Pope P.H., Safford N.A.The rapid deformation behaviour of various polymers. J. Phys. 1, 1889 (1991)
48.Plazek D.J.Anomalous viscoelastic properties of polymers: Experiments and explanations. J. Non-Cryst. Solids 353, 3783 (2007)
49.Ferry J.D.Viscoelastic Properties of Polymers 3rd ed. (John Wiley, New York 1980)
50.Ngai K.L., Plazek D.J.Resolution of sub-rouse modes of polystyrene by dissolution. Macromolecules 35, 9136 (2002)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 44 *
Loading metrics...

Abstract views

Total abstract views: 182 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd November 2017. This data will be updated every 24 hours.