Skip to main content Accessibility help
×
×
Home

Thick beryllium coatings by ion-assisted magnetron sputtering

  • Hongwei Xu (a1), Craig Alford (a2), Eric Chason (a3), Andrew J. Detor (a4), Tim Fuller (a5), Alex V. Hamza (a6), Jeff Hayes (a7), Kari A. Moreno (a7), Abbas Nikroo (a7), Tony van Buuren (a8), Yinmin Wang (a8), Jun-jim Wu (a9), Heather Wilkens (a9) and Kelly P. Youngblood (a9)...
Abstract

Thick (>150 μm) beryllium coatings are studied as an ablator material of interest for fusion fuel capsules for the National Ignition Facility. DC magnetron sputtering is used because of the relative controllability of the processing temperature and energy of the deposits. However, coatings produced by DC magnetron sputtering leak the fuel gas D2. By using ion-assisted DC magnetron, sputtered coatings can be made that are leak-tight. Transmission electron microscopy (TEM) studies revealed microstructural changes that lead to leak-tight coating. Ultrasmall angle x-ray spectroscopy is used to characterize the void distribution and volume along the spherical surface along with a combination of focused ion beam, scanning electron microscope, and TEM. An in situ multibeam optical stress sensor was used to measure the stress behavior of thick beryllium coatings on flat substrates as the material was being deposited.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: xuh@fusion.gat.com
References
Hide All
1.Haan, S.W., Callahan, D.A., Edwards, M.J., Hammel, B.A., Ho, D.D., Jones, O.S., Lindl, J.D., Macgowan, B.J., Marinak, M.M., Munro, D.H., Pollaine, S.M., Salmonson, J.D., Spears, B.K., and Suter, L.J.: Rev3 update of requirements for NIF ignition targets. Fusion Sci. Technol. 55, 227 (2009).
2.Mceachern, R., Alford, C., Cook, R., Makowcki, D., and Wallace, R.: Sputter-deposited Be ablators for NIF target capsules. Fusion Technol. 31, 435 (1997).
3.Xu, H.W., Nikroo, A., Wall, J.R., Doerner, R., Baldwin, M., and Yu, J.H.: Be coating on spherical surface for NIF target development. Fusion Sci. Technol. 49, 778 (2006).
4.Xu, H.W., Alford, C.S., Cooley, J.C., Dixon, L.A., Hackenberg, R.E., Letts, S.A., Moreno, K.A., Nikroo, A., Wall, J.R., and Youngblood, K.P.: Beryllium capsule coating development for NIF targets. Fusion Sci. Technol. 51, 547 (2007).
5.Nikroo, A., Xu, H.W., Moreno, K.A., Youngblood, K.P., Cooley, J., Alford, C.S., Letts, S.A., and Cook, R.C.: Investigation of deuterium permeability of sputtered beryllium and graded copper-doped beryllium shells. Fusion Sci. Technol. 51, 553 (2007).
6.Robbie, K. and Brett, M.J.: Sculptured thin films and glancing angle deposition: Growth mechanisms and applications. J. Vac. Sci. Technol. A 15(3), 1460 (1997).
7.Dalla Torre, J., Gilmer, G.H., Windt, D.L., Kalyanaraman, R., Baumann, F.H., O’Sullivan, P.L., Sapjeta, J., Diaz de la Rubia, T., and Djafari Rouhani, M.: Microstructure of thin tantalum films sputtered onto inclined substrates: Experiments and atomistic simulations. J. Appl. Phys. 94, 264 (2003).
8.Thornton, J.A.: High rate thick film growth. Annu. Rev. Mater. Sci. 7, 239 (1977).
9.Helmersson, U., Lattemann, M., Bohlmark, J., Ehiasarian, A.P., and Gudmudsson, J.T.: Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films 513, 1 (2006).
10.Tao, K., Mao, D., and Hopwood, J.: Ionized physical vapor deposition of titanium nitride: A global plasma model. J. Appl. Phys. 91, 4040 (2002).
11.Hopwood, J.: Ionized physical vapor deposition of integrated circuit interconnects. Phys. Plasmas 5, 1624 (1998).
12.Juliano, D.R., Ruzic, D.N., Allain, M.M.C., and Hayden, D.B.: Influences on ionization fraction in an inductively coupled ionized physical vapor deposition device plasma. J. Appl. Phys. 91, 605 (2002).
13.Arunachalam, V., Rauf, S., Coronell, D.G., and Ventzek, P.L.G.: Integrated multi-scale model for ionized plasma physical vapor deposition. J. Appl. Phys. 90, 64 (2001).
14.Chason, E., Sheldon, B.W., Freund, L.B., Floro, J.A., and Hearne, S.J.: Origin of compressive residual stress in polycrystalline thin films. Phys. Rev. Lett. 88, 156103 (2002).
15.Friesen, C. and Thompson, C.V.: Reversible stress relaxation during precoalescence interruptions of Volmer-Weber thin film growth. Phys. Rev. Lett. 89, 126103 (2002).
16.Sheldon, B.W., Lau, K.H.A., and Rajamani, A.: Intrinsic stress, island coalescence, and surface roughness during the growth of polycrystalline films. J. Appl. Phys. 90, 5097 (2001).
17.Seel, S.C. and Thompson, C.V.: Tensile stress generation during island coalescence for variable island-substrate contact angles. J. Appl. Phys. 93, 9038 (2003).
18.Detor, A., Hodge, A., Chason, E., Wang, Y., Xu, H., Conyers, M., Nikroo, A., and Hamza, A.: Stress and microstructure evolution in thick sputtered films. Acta Mater. 57, 2055 (2009).
19.Alfonso, E.L., Jaquez, J.S., and Nikroo, A.: Gas permeation barrier characterization by mass spectrometry. Fusion Sci. Technol. 49, 773 (2006).
20.Ilavsky, J. and Jemian, P.R.: Irena: Tool suite for modeling and analysis of small-angle scattering. J. Appl. Crystallogr. 42, 347 (2009).
21.Freund, L.B. and Suresh, S.: Thin film materials: Stress, defect formation, and surface evolution (Cambridge University Press, Cambridge, 2003).
22.Okimura, K. and Nakamura, T.: Ionic densities and ionization fractions of sputtered titanium in radio frequency magnetron sputtering. J. Vac. Sci. Technol. A 21, 988 (2003).
23.Rossnagel, S.M. and Hopwood, J.: Metal ion deposition from ionized magnetron sputtering discharge. J. Vac. Sci. Technol. B 12, 449 (1994).
24.Aquaro, D. and DiPrinzio, M.: Molecular dynamics simulation of surface vaporization in beryllium plasma facing components. Fusion Eng. Des. 82, 1681 (2007).
25.Zepeda-Ruiz, L.A., Chason, E., Gilmer, G., Wang, Y., Xu, H., Nikroo, A., and Hamza, A.: Understanding the relation between stress and surface morphology in sputtered films: Atomistic simulations and experiments. Appl. Phys. Lett. 95, 151910 (2009).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed