Skip to main content
×
Home
    • Aa
    • Aa

Three-dimensional arrays of graphenated carbon nanotubes

  • Charles B. Parker (a1), Akshay S. Raut (a1), Billyde Brown (a1), Brian R. Stoner (a2) and Jeffrey T. Glass (a3)...
Abstract
Abstract

Graphene and carbon nanotubes (CNTs) are fascinating materials, both scientifically and technologically, due to their exceptional properties and potential use in applications ranging from high-frequency electronics to energy storage devices. This manuscript introduces a hybrid structure consisting of graphitic foliates grown along the length of aligned multiwalled CNTs. The foliate density and layer thickness vary as a function of deposition conditions, and a model is proposed for their nucleation and growth. The hybrid structures were studied using electron microscopy and Raman spectroscopy. The foliates consist of edges that approach the dimensions of graphene and provide enhanced charge storage capacity. Electrochemical impedance spectroscopy indicated that the weight-specific capacitance for the graphenated CNTs was 5.4× that of similar CNTs without the graphitic foliates. Pulsed charge injection measurements demonstrated a 7.3× increase in capacitance per unit area. These data suggest that this unique structure integrates the high surface charge density of the graphene edges with the high longitudinal conductivity of the CNTs and may have significant impact in charge storage and related applications.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: charles.parker@duke.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. H.T. Hall : Ultra-high-pressure, high-temperature apparatus: The “belt”. Rev. Sci. Instrum. 31(2), 125 (1960).

2. M. Werner and R. Locher : Growth and application of undoped and doped diamond films. Rep. Prog. Phys. 61(12), 1665 (1998).

3. H.W. Kroto , J.R. Heath , S.C. O’Brien , R.F. Curl , and R.E. Smalley : C60: Buckminsterfullerene. Nature 318, 162 (1985).

4. S. Iijima : Helical microtubules of graphitic carbon. Nature 354, 56 (1991).

6. K.S. Novoselov , A.K. Geim , S.V. Morozov , D. Jiang , Y. Zhang , S.V. Dubonos , I.V. Grigorieva , and A.A. Firsov : Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

7. Y.H. Wu , T. Yu , and Z.X. Shen : Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications. J. Appl. Phys. 108(7), 071301 (2010).

8. M. Pumera , A. Ambrosi , A. Bonanni , E.L.K. Chng , and H.L. Poh : Graphene for electrochemical sensing and biosensing. TrAC, Trends Anal. Chem. 29(9), 954 (2010).

9. D. Wei and Y. Liu : Controllable synthesis of graphene and its applications. Adv. Mater. 22(30), 3225 (2010).

10. S. Trasobares , C.P. Ewels , J. Birrell , O. Stephan , B.Q. Wei , J.A. Carlisle , D. Miller , P. Keblinski , and P.M. Ajayan : Carbon nanotubes with graphitic wings. Adv. Mater. 16(7), 610613 (2004).

11. K. Yu , G. Lu , Z. Bo , S. Mao , and J. Chen : Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications. J. Phys. Chem. Lett. 2(13), 15561562 (2011).

12. B.R. Stoner , A.S. Raut , B. Brown , C.B. Parker , and J.T. Glass : Graphenated carbon nanotubes for enhanced electrochemical double layer capacitor performance. Appl. Phys. Lett. 99(18), 183104 (2011).

13. J-P. Randin and E. Yeager : Differential capacitance study of stress-annealed pyrolytic graphite electrodes. J. Electrochem. Soc. 118(5), 711 (1971).

15. S.F. Cogan : Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10(1), 275 (2008).

16. S. Natarajan , K.H. Gilchrist , J.R. Piascik , C.B. Parker , J.T. Glass , and B.R. Stoner : Simulation and testing of a lateral, microfabricated electron-impact ion source. Appl. Phys. Lett. 94(4), 044109 (2009).

17. R. Kurt , A. Karimi , and V. Hoffmann : Growth of decorated carbon nano-tubes. Chem. Phys. Lett. 335, 545 (2001).

18. O. Lourie and H.D. Wagner : Evidence of stress transfer and formation of fracture clusters in carbon nanotube-based composites. Compos. Sci. Technol. 59(6), 975 (1999).

19. R. Kurt and A. Karimi : Influence of nitrogen on the growth mechanism of decorated C:N nanotubes. ChemPhysChem 2(6), 388 (2001).

20. R. Kurt , C. Klinke , J.M. Bonard , K. Kern , and A. Karimi : Tailoring the diameter of decorated C-N nanotubes by temperature variations using HF-CVD. Carbon 39, 21632001.

21. D. Mata , M. Ferro , A.J.S. Fernandes , M. Amaral , F.J. Oliveira , P.M.F.J. Costa , and R.F. Silva : Wet-etched Ni foils as active catalysts towards carbon nanofiber growth. Carbon 48(10), 2839 (2010).

22. H. Cui , O. Zhou , and B.R. Stoner : Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition. J. Appl. Phys. 2000. 88(10): p. 60726074.

23. M. Endo , K. Takeuchi , T. Hiraoka , T. Furuta , T. Kasai , X. Sun , C.H. Kiang , and M.S. Dresselhaus : Stacking nature of graphene layers in carbon nanotubes and nanofibres. J. Phys. Chem. Solids 58(11), 1707 (1997).

24. M. Zhu , J. Wang , B.C. Holloway , R.A. Outlaw , X. Zhao , K. Hou , V. Shutthanandan , and D.M. Manos : A mechanism for carbon nanosheet formation. Carbon, 2007. 45(11), pp. 22292234.

25. D.A. Porter and K.E. Easterling : Phase Transformations in Metals and Alloys, 2nd ed. (Chapman & Hall, New York, 1992).

26. D.K. Singh , P.K. Iyer , and P.K. Giri : Diameter dependence of interwall separation and strain in multiwalled carbon nanotubes probed by x-ray diffraction and Raman scattering studies. Diamond Relat. Mater. 19, 1281 (2010).

27. A.C. Ferrari , J.C. Meyer , V. Scardaci , C. Casiraghi , M. Lazzeri , F. Mauri , S. Piscanec , D. Jiang , K.S. Novoselov , S. Roth , and A.K. Geim : Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18) 187401 (2006).

28. C. Faugeras , A. Nerriere , M. Potemski , A. Mahmood , E. Dujardin , C. Berger , and W.A. de Heer : Few-layer graphene on SiC, pyrolitic graphite, and graphene: A Raman scattering study. Appl. Phys. Lett. 92(1), 011914 (2008).

29. M.S. Dresselhaus , A. Jorio , M. Hofmann , G. Dresselhaus , and R. Saito : Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10(3), 751 (2010).

30. X-F. Li , B-L. Wang , and K.Y. Lee : Size effects of the bending stiffness of nanowires. J. Appl. Phys. 105(7), 074306 (2009).

31. Y. Sun and Q. Chen : Diameter dependent strength of carbon nanotube reinforced composite. Appl. Phys. Lett. 95(2), 021901 (2009).

32. M-F. Yu , O. Lourie , M.J. Dyer , K. Moloni , T.F. Kelly , and R.S. Ruoff : Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637 (2000).

33. K. Lee , B. Lukic , A. Magrez , J.W. Seo , G.A.D. Briggs , A.J. Kulik , and L. Forro : Diameter-dependent elastic modulus supports the metastable-catalyst growth of carbon nanotubes. Nano Lett. 7(6), 1598 (2007).

34. P. Poncharal , Z.L. Wang , D. Ugarte , and W.A. de Heer : Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513 (1999).

35. D.H. Robertson , D.W. Brenner , and J.W. Mintmire : Energetics of nanoscale graphitic tubules. Phys. Rev. B 45(21), 1259212595 (1992).

36. B. Peng , M. Locascio , P. Zapol , S. Li , S.L. Mielke , G.C. Schatz , and H.D. Espinosa : Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature Nanotechnology 3(10), 626631 (2008).

37. M-S. Wang , D. Golberg , and Y. Bando : Tensile tests on individual single-walled carbon nanotubes: Linking nanotube strength with its defects. Adv. Mater. 22(36), 4071 (2010).

38. Y. Nakayama : Plasticity of carbon nanotubes: Aiming at their use in nanosized devices. Jpn. J. Appl. Phys. 46, 5005 (2007).

39. C. Wei , K. Cho , and D. Srivastava : Tensile strength of carbon nanotubes under realistic temperature and strain rate. Phys. Rev. B 67(11), 115407 (2003).

40. E.T. Thostenson and T-W. Chou : Nanotube buckling in aligned multi-wall carbon nanotube composites. Carbon 42(14), 3015 (2004).

41. C. Ducati , I. Alexandrou , M. Chhowalla , J. Robertson , and G.A.J. Amaratunga : The role of the catalytic particle in the growth of carbon nanotubes by plasma enhanced chemical vapor deposition. J. Appl. Phys. 95(11), 6387 (2004).

43. C. Du , J. Yeh , and N. Pan : High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology 16(4), 350 (2005).

44. V.V.N. Obreja : On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material–A review. Physica E 40(7), 2596 (2008).

45. J. Li and R.J. Andrews : Trimodal nanoelectrode array for precise deep brain stimulation: Prospects of a new technology based on carbon nanofiber arrays, in Operative Neuromodulation, edited by D.E. Sakas and B.A. Simpson (Springer-Verlag, Austria, 2007), pp. 537545.

46. S. Minnikanti , P. Skeath , and N. Peixoto : Electrochemical characterization of multi-walled carbon nanotube coated electrodes for biological applications. Carbon 47(3), 884 (2009).

47. T.D.B. Nguyen-Vu , C. Hua , A.M. Cassell , R.J. Andrews , M. Meyyappan , and L. Jun : Vertically aligned carbon nanofiber architecture as a multifunctional 3-D neural electrical interface. IEEE Trans.Biomed. Eng. 54(6), 1121 (2007).

49. K. Wang , H.A. Fishman , H. Dai , and J.S. Harris : Neural stimulation with a carbon nanotube microelectrode array. Nano Lett. 6(9), 2043 (2006).

50. A. Mazzatenta , M. Giugliano , S. Campidelli , L. Gambazzi , L. Businaro , H. Markram , M. Prato , and L. Ballerini : Interfacing neurons with carbon nanotubes: Electrical signal transfer and synaptic stimulation in cultured brain circuits. J. Neurosci. 27(26), 6931 (2007).

51. S. Minnikanti , M.G. Pereira , S. Jaraiedi , K. Jackson , C.M. Costa-Neto , Q. Li , and N. Peixoto : In vivo electrochemical characterization and inflammatory response of multiwalled carbon nanotube-based electrodes in rat hippocampus. J. Neural Eng. 7(1), 16002 (2010).

52. S.R. Yeh , Y.C. Chen , H.C. Su , T.R. Yew , H.H. Kao , Y.T. Lee , T.A. Liu , H. Chen , Y.C. Chang , and P. Chang : Interfacing neurons both extracellularly and intracellularly using carbon-nanotube probes with long-term endurance. Langmuir 25(13), 7718 (2009).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 4
Total number of PDF views: 38 *
Loading metrics...

Abstract views

Total abstract views: 257 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th April 2017. This data will be updated every 24 hours.