Skip to main content
×
×
Home

Three-dimensional arrays of graphenated carbon nanotubes

  • Charles B. Parker (a1), Akshay S. Raut (a1), Billyde Brown (a1), Brian R. Stoner (a2) and Jeffrey T. Glass (a3)...
Abstract
Abstract

Graphene and carbon nanotubes (CNTs) are fascinating materials, both scientifically and technologically, due to their exceptional properties and potential use in applications ranging from high-frequency electronics to energy storage devices. This manuscript introduces a hybrid structure consisting of graphitic foliates grown along the length of aligned multiwalled CNTs. The foliate density and layer thickness vary as a function of deposition conditions, and a model is proposed for their nucleation and growth. The hybrid structures were studied using electron microscopy and Raman spectroscopy. The foliates consist of edges that approach the dimensions of graphene and provide enhanced charge storage capacity. Electrochemical impedance spectroscopy indicated that the weight-specific capacitance for the graphenated CNTs was 5.4× that of similar CNTs without the graphitic foliates. Pulsed charge injection measurements demonstrated a 7.3× increase in capacitance per unit area. These data suggest that this unique structure integrates the high surface charge density of the graphene edges with the high longitudinal conductivity of the CNTs and may have significant impact in charge storage and related applications.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: charles.parker@duke.edu
References
Hide All
1.Hall H.T.: Ultra-high-pressure, high-temperature apparatus: The “belt”. Rev. Sci. Instrum. 31(2), 125 (1960).
2.Werner M. and Locher R.: Growth and application of undoped and doped diamond films. Rep. Prog. Phys. 61(12), 1665 (1998).
3.Kroto H.W., Heath J.R., O’Brien S.C., Curl R.F., and Smalley R.E.: C60: Buckminsterfullerene. Nature 318, 162 (1985).
4.Iijima S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).
6.Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., and Firsov A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).
7.Wu Y.H., Yu T., and Shen Z.X.: Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications. J. Appl. Phys. 108(7), 071301 (2010).
8.Pumera M., Ambrosi A., Bonanni A., Chng E.L.K., and Poh H.L.: Graphene for electrochemical sensing and biosensing. TrAC, Trends Anal. Chem. 29(9), 954 (2010).
9.Wei D. and Liu Y.: Controllable synthesis of graphene and its applications. Adv. Mater. 22(30), 3225 (2010).
10.Trasobares S., Ewels C.P., Birrell J., Stephan O., Wei B.Q., Carlisle J.A., Miller D., Keblinski P., and Ajayan P.M.: Carbon nanotubes with graphitic wings. Adv. Mater. 16(7), 610613 (2004).
11.Yu K., Lu G., Bo Z., Mao S., and Chen J.: Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications. J. Phys. Chem. Lett. 2(13), 15561562 (2011).
12.Stoner B.R., Raut A.S., Brown B., Parker C.B., and Glass J.T.: Graphenated carbon nanotubes for enhanced electrochemical double layer capacitor performance. Appl. Phys. Lett. 99(18), 183104 (2011).
13.Randin J-P. and Yeager E.: Differential capacitance study of stress-annealed pyrolytic graphite electrodes. J. Electrochem. Soc. 118(5), 711 (1971).
14.Raut A.S., Parker C.B., and Glass J.T.: A method to obtain a Ragone plot for evaluation of carbon nanotube supercapacitor electrodes. J. Mater. Res. 25(8), 1500 (2010).
15.Cogan S.F.: Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10(1), 275 (2008).
16.Natarajan S., Gilchrist K.H., Piascik J.R., Parker C.B., Glass J.T., and Stoner B.R.: Simulation and testing of a lateral, microfabricated electron-impact ion source. Appl. Phys. Lett. 94(4), 044109 (2009).
17.Kurt R., Karimi A., and Hoffmann V.: Growth of decorated carbon nano-tubes. Chem. Phys. Lett. 335, 545 (2001).
18.Lourie O. and Wagner H.D.: Evidence of stress transfer and formation of fracture clusters in carbon nanotube-based composites. Compos. Sci. Technol. 59(6), 975 (1999).
19.Kurt R. and Karimi A.: Influence of nitrogen on the growth mechanism of decorated C:N nanotubes. ChemPhysChem 2(6), 388 (2001).
20.Kurt R., Klinke C., Bonard J.M., Kern K., and Karimi A.: Tailoring the diameter of decorated C-N nanotubes by temperature variations using HF-CVD. Carbon 39, 2163 2001.
21.Mata D., Ferro M., Fernandes A.J.S., Amaral M., Oliveira F.J., Costa P.M.F.J., and Silva R.F.: Wet-etched Ni foils as active catalysts towards carbon nanofiber growth. Carbon 48(10), 2839 (2010).
22.Cui H., Zhou O., and Stoner B.R.: Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition. J. Appl. Phys. 2000. 88(10): p. 60726074.
23.Endo M., Takeuchi K., Hiraoka T., Furuta T., Kasai T., Sun X., Kiang C.H., and Dresselhaus M.S.: Stacking nature of graphene layers in carbon nanotubes and nanofibres. J. Phys. Chem. Solids 58(11), 1707 (1997).
24.Zhu M., Wang J., Holloway B.C., Outlaw R.A., Zhao X., Hou K., Shutthanandan V., and Manos D.M.: A mechanism for carbon nanosheet formation. Carbon, 2007. 45(11), pp. 22292234.
25.Porter D.A. and Easterling K.E.: Phase Transformations in Metals and Alloys, 2nd ed. (Chapman & Hall, New York, 1992).
26.Singh D.K., Iyer P.K., and Giri P.K.: Diameter dependence of interwall separation and strain in multiwalled carbon nanotubes probed by x-ray diffraction and Raman scattering studies. Diamond Relat. Mater. 19, 1281 (2010).
27.Ferrari A.C., Meyer J.C., Scardaci V., Casiraghi C., Lazzeri M., Mauri F., Piscanec S., Jiang D., Novoselov K.S., Roth S., and Geim A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18) 187401 (2006).
28.Faugeras C., Nerriere A., Potemski M., Mahmood A., Dujardin E., Berger C., and de Heer W.A.: Few-layer graphene on SiC, pyrolitic graphite, and graphene: A Raman scattering study. Appl. Phys. Lett. 92(1), 011914 (2008).
29.Dresselhaus M.S., Jorio A., Hofmann M., Dresselhaus G., and Saito R.: Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10(3), 751 (2010).
30.Li X-F., Wang B-L., and Lee K.Y.: Size effects of the bending stiffness of nanowires. J. Appl. Phys. 105(7), 074306 (2009).
31.Sun Y. and Chen Q.: Diameter dependent strength of carbon nanotube reinforced composite. Appl. Phys. Lett. 95(2), 021901 (2009).
32.Yu M-F., Lourie O., Dyer M.J., Moloni K., Kelly T.F., and Ruoff R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637 (2000).
33.Lee K., Lukic B., Magrez A., Seo J.W., Briggs G.A.D., Kulik A.J., and Forro L.: Diameter-dependent elastic modulus supports the metastable-catalyst growth of carbon nanotubes. Nano Lett. 7(6), 1598 (2007).
34.Poncharal P., Wang Z.L., Ugarte D., and de Heer W.A.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513 (1999).
35.Robertson D.H., Brenner D.W., and Mintmire J.W.: Energetics of nanoscale graphitic tubules. Phys. Rev. B 45(21), 1259212595 (1992).
36.Peng B., Locascio M., Zapol P., Li S., Mielke S.L., Schatz G.C., and Espinosa H.D.: Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature Nanotechnology 3(10), 626631 (2008).
37.Wang M-S., Golberg D., and Bando Y.: Tensile tests on individual single-walled carbon nanotubes: Linking nanotube strength with its defects. Adv. Mater. 22(36), 4071 (2010).
38.Nakayama Y.: Plasticity of carbon nanotubes: Aiming at their use in nanosized devices. Jpn. J. Appl. Phys. 46, 5005 (2007).
39.Wei C., Cho K., and Srivastava D.: Tensile strength of carbon nanotubes under realistic temperature and strain rate. Phys. Rev. B 67(11), 115407 (2003).
40.Thostenson E.T. and Chou T-W.: Nanotube buckling in aligned multi-wall carbon nanotube composites. Carbon 42(14), 3015 (2004).
41.Ducati C., Alexandrou I., Chhowalla M., Robertson J., and Amaratunga G.A.J.: The role of the catalytic particle in the growth of carbon nanotubes by plasma enhanced chemical vapor deposition. J. Appl. Phys. 95(11), 6387 (2004).
42.Chang L. and Hui-Ming C.: Carbon nanotubes for clean energy applications. J. Phys. D: Appl. Phys. 14, R231 (2005).
43.Du C., Yeh J., and Pan N.: High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology 16(4), 350 (2005).
44.Obreja V.V.N.: On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material–A review. Physica E 40(7), 2596 (2008).
45.Li J. and Andrews R.J.: Trimodal nanoelectrode array for precise deep brain stimulation: Prospects of a new technology based on carbon nanofiber arrays, in Operative Neuromodulation, edited by Sakas D.E. and Simpson B.A. (Springer-Verlag, Austria, 2007), pp. 537545.
46.Minnikanti S., Skeath P., and Peixoto N.: Electrochemical characterization of multi-walled carbon nanotube coated electrodes for biological applications. Carbon 47(3), 884 (2009).
47.Nguyen-Vu T.D.B., Hua C., Cassell A.M., Andrews R.J., Meyyappan M., and Jun L.: Vertically aligned carbon nanofiber architecture as a multifunctional 3-D neural electrical interface. IEEE Trans.Biomed. Eng. 54(6), 1121 (2007).
48.Phely-Bobin T.S., Tiano T., Farrell B., Fooksa R., Robblee L., Edell D.J., and Czerw R.: Carbon nanotube based electrodes for neuroprosthetic applications, in Electrobiological Interfaces on Soft Substrates, edited by Conde J.P., Morrison B., and Lacour S.P. (Mater. Res. Soc. Symp. Proc. 926E, Warrendale, PA, 2006), 0926-CC04-01.
49.Wang K., Fishman H.A., Dai H., and Harris J.S.: Neural stimulation with a carbon nanotube microelectrode array. Nano Lett. 6(9), 2043 (2006).
50.Mazzatenta A., Giugliano M., Campidelli S., Gambazzi L., Businaro L., Markram H., Prato M., and Ballerini L.: Interfacing neurons with carbon nanotubes: Electrical signal transfer and synaptic stimulation in cultured brain circuits. J. Neurosci. 27(26), 6931 (2007).
51.Minnikanti S., Pereira M.G., Jaraiedi S., Jackson K., Costa-Neto C.M., Li Q., and Peixoto N.: In vivo electrochemical characterization and inflammatory response of multiwalled carbon nanotube-based electrodes in rat hippocampus. J. Neural Eng. 7(1), 16002 (2010).
52.Yeh S.R., Chen Y.C., Su H.C., Yew T.R., Kao H.H., Lee Y.T., Liu T.A., Chen H., Chang Y.C., and Chang P.: Interfacing neurons both extracellularly and intracellularly using carbon-nanotube probes with long-term endurance. Langmuir 25(13), 7718 (2009).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 13
Total number of PDF views: 81 *
Loading metrics...

Abstract views

Total abstract views: 448 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st January 2018. This data will be updated every 24 hours.