Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-18T03:03:47.739Z Has data issue: false hasContentIssue false

TiO2-Al2O3 nanocomposites

Published online by Cambridge University Press:  03 March 2011

G. Pacheco-Malagon
Affiliation:
Materials Department, ESFM-IPN, Edif. 9 UP, Adolfo Lopes Mateos, Zacatenco, CP 07300 Mexico
A. Garcia-Borquez
Affiliation:
Materials Department, ESFM-IPN, Edif. 9 UP, Adolfo Lopes Mateos, Zacatenco, CP 07300 Mexico
D. Coster
Affiliation:
Department of Chemistry, Laboratory for Surface Studies, University of Wisconsin-Milwaukee. P.O. Box 413, Milwaukee, Wisconsin 53210-0413
A. Sklyarov
Affiliation:
Advanced Analytical Facility, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53210-0413
J.J. Fripiat*
Affiliation:
Department of Chemistry, Laboratory for Surface Studies, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53210-0413
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

Nanosized TiO2 is synthesized in a nanosized alumina matrix by a sol-gel procedure. The results of the study of the blueshift of the TiO2 UV band edge are compared to the information obtained from transmission electron microscopy (TEM). As long as the atomic ratio Ti/Al remains smaller than 17.5%, no individualized TiO2 particles are detected by TEM, in spite of the fact that no modification of the alumina structure occurs, as revealed by 27Al MAS NMR. The shift of the UV band edge suggests the growth of homogeneous TiO2 domains in the alumina matrix. Above a critical radius, on the order of 1.2 nm, individual and crystalline TiO2 particles become visible in the TEM picture, and the porosity of the material decreases markedly.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Coster, D. and Fripiat, J. J., Chem. Mater. 5, 1204 (1993).CrossRefGoogle Scholar
2Coster, D., Levitz, P., and Fripiat, J. J., in Molecularly Designed Ultrafine Nano-Structured Materials, edited by Gonsalves, K. E., Chow, G-M., Xiao, T. D., and Cammarata, R. C. (Mater. Res. Soc. Symp. Proc. 351, Pittsburgh, PA, 1994), p. 157.Google Scholar
3Barret, E. P., Joyner, L. G., and Halenda, P. H., J. Am. Chem. Soc. 73, 373 (1951).CrossRefGoogle Scholar
4Coster, D., Blumenfeld, A. L., and Fripiat, J. J., J. Phys. Chem. 98, 6201 (1994).CrossRefGoogle Scholar
5Bras, L., J. Phys. Chem. 90, 2555 (1986).CrossRefGoogle Scholar
6Wang, Y., Suna, A., Mahler, W., and Kasowski, R., J. Chem. Phys. 87, 7315 (1987).CrossRefGoogle Scholar
7Davis, R. J., Chem. Mater. 4, 1410 (1992).CrossRefGoogle Scholar
8Kasinski, J. J., Gomez-John, L.A., Faran, K. J., Gracewski, S. M., and Dwayne-Miller, R.J., J. Chem. Phys. 90, 1253 (1989).CrossRefGoogle Scholar
9Yoneama, H., Shigeo, H., and Yamanake, S., J. Phys. Chem. 93, 4833 (1989).CrossRefGoogle Scholar
10Anpo, M., Kawanura, T., Kodama, S., Maruya, K., and Onishi, T., J. Phys. Chem. 92, 438 (1988).CrossRefGoogle Scholar
11Liu, Z. and Davis, R. J., J. Phys. Chem. 98, 1253 (1994).CrossRefGoogle Scholar
12Zhang, Y., Raman, N., Bailey, K., Brinker, J., Jeffrey, C., and Crooks, R. M., J. Phys. Chem. 96, 9098 (1992).CrossRefGoogle Scholar