Skip to main content
×
Home
    • Aa
    • Aa

Towards an integrated materials characterization toolbox

  • Ian M. Robertson (a1), Christopher A. Schuh (a2), John S. Vetrano (a3), Nigel D. Browning (a4), David P. Field (a5), Dorte Juul Jensen (a6), Michael K. Miller (a7), Ian Baker (a8), David C. Dunand (a9), Rafal Dunin-Borkowski (a10), Bernd Kabius (a11), Tom Kelly (a12), Sergio Lozano-Perez (a13), Amit Misra (a14), Gregory S. Rohrer (a15), Anthony D. Rollett (a15), Mitra L. Taheri (a16), Greg B. Thompson (a17), Michael Uchic (a18), Xun-Li Wang (a19) and Gary Was (a20)...
Abstract
Abstract

The material characterization toolbox has recently experienced a number of parallel revolutionary advances, foreshadowing a time in the near future when material scientists can quantify material structure evolution across spatial and temporal space simultaneously. This will provide insight to reaction dynamics in four-dimensions, spanning multiple orders of magnitude in both temporal and spatial space. This study presents the authors’ viewpoint on the material characterization field, reviewing its recent past, evaluating its present capabilities, and proposing directions for its future development. Electron microscopy; atom probe tomography; x-ray, neutron and electron tomography; serial sectioning tomography; and diffraction-based analysis methods are reviewed, and opportunities for their future development are highlighted. Advances in surface probe microscopy have been reviewed recently and, therefore, are not included [D.A. Bonnell et al.: Rev. Modern Phys. in Review]. In this study particular attention is paid to studies that have pioneered the synergetic use of multiple techniques to provide complementary views of a single structure or process; several of these studies represent the state-of-the-art in characterization and suggest a trajectory for the continued development of the field. Based on this review, a set of grand challenges for characterization science is identified, including suggestions for instrumentation advances, scientific problems in microstructure analysis, and complex structure evolution problems involving material damage. The future of microstructural characterization is proposed to be one not only where individual techniques are pushed to their limits, but where the community devises strategies of technique synergy to address complex multiscale problems in materials science and engineering.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: ianr@illinois.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

2. R. Mendoza , J. Alkemper , and P.W. Voorhees : The morphological evolution of dendritic microstructures during coarsening. Metall. Mater. Trans. A 34, 481 (2003).

4. B.C. Larson , W. Wang , G.E. Ice , J.D. Budai , and J.Z. Tischler : Three dimensional x-ray structural microscopy with submicrometre resolution. Nature 415, 887 (2002).

7. A. King , G. Johnson , D. Engelberg , W. Ludwig , and J. Marrow : Observations of intergranular stress-corrosion cracking in a grain-mapped polycrystal. Science 321, 382 (2008).

8. M.D. Uchic , M.A. Groeber , D.M. Dimiduk , and J.P. Simmons : 3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM. Scr. Mater. 55, 23 (2006).

12. J.E. Spowart : Automated serial sectioning for 3-D analysis of microstructures. Scr. Mater. 55, 5 (2006).

14. A.J. Wilkinson , E.E. Clarke , T.B. Britton , P. Littlewood , and P.S. Karamched : High-resolution electron backscatter diffraction: An emerging tool for studying local deformation. J. Strain Anal. Eng. Des. 45, 365 (2010).

15. A.J. Wilkinson , G. Meaden , and D.J. Dingley : High resolution mapping of strains and rotations using electron backscatter diffraction. Mater. Sci. Technol. 22, 1271 (2006).

17. H.F. Poulsen : Three-Dimensional X-Ray Diffraction Microscopy: Mapping Polycrystals and their Dynamics (Springer-Verlag, Berlin Heidelberg, 2004).

18. G.E. Ice and B.C. Larson : 3D x-ray crystal microscope. Adv. Eng. Mater. 2, 643 (2000).

20. B.F. McEwen , C. Renken , M. Marko , C. Mannella : Principles and practice in electron tomography. Methods Cell Biol. 89, 129, (2008).

24. O.L. Krivanek , G.J. Corbin , N. Dellby , B.F. Elston , R.J. Keyse , M.F. Murfitt , C.S. Own , Z.S. Szilagyi , and J.W. Woodruff : An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179 (2008).

25. H. Rose : Aberration correction in electron microscopy. Int. J. Mater. Res. 97, 885 (2006).

26. Y. Zhu and J. Wall : Aberration-corrected electron microscopes at Brookhaven Microscopes at Brookhaven National Laboratory. Advances in Imaging and Electron Physics 153, 481 (2008).

30. T.F. Kelly and M.K. Miller : Invited review article: Atom probe tomography. Rev. Sci. Instrum. 78, 031101 (2007).

31. M.K. Miller : Atom Probe Tomography: Analysis at the Atomic Level (Kluwer Academic/Plenum Publishers, New York, 2000).

35. M.D. Uchic : 3D microstructural characterization: Methods, analysis, and applications. JOM 58, 24 (2006).

41. H. Rose : Prospects for realizing a sub-Å sub-eV resolution EFTEM. Ultramicroscopy 78, 13 (1999).

42. M. Haider , H. Rose , S. Uhlemann , E. Schwan , B. Kabius , and K. Urban : A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 53 (1998).

43. M. Haider , H. Müller , S. Uhlemann , J. Zach , U. Loebau , and R. Hoeschen : Prerequisites for a Cc/Cs-corrected ultrahigh-resolution TEM. Ultramicroscopy 108, 167 (2008).

47. S.A. Hilbert , C. Uiterwaal , B. Barwick , H. Batelaan , and A.H. Zewail : Temporal lenses for attosecond and femtosecond electron pulses. Proc. Natl. Acad. Sci. U.S.A. 106, 10558 (2009).

49. M.A. Haque and M.T.A. Saif : Microscale materials testing using MEMS actuators. J. Microelectromech. Syst. 10, 146 (2001).

53. J. Frank : Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell (Springer Science and Business Media, LLC., New York, 2006).

54. S. Subramaniam and J.L. Milne : Three-dimensional electron microscopy at molecular resolution. Annu. Rev. Biophys. Biomol. Struct. 33, 141 (2004).

55. J.S. Lengyel , J.L. Milne , and S. Subramaniam : Electron tomography in nanoparticle imaging and analysis. Nanomedicine 3, 125 (2008).

56. B.F. McEwen and M. Marko : The emergence of electron tomography as an important tool for investigating cellular ultrastructure. J. Histochem. Cytochem. 49, 553 (2001).

60. G. Mobus and B.J. Inkson : Three-dimensional reconstruction of buried nanoparticles by element-sensitive tomography based on inelastically scattered electrons. Appl. Phys. Lett. 79, 1369 (2001).

61. E.P.W. Ward , T.J.V. Yates , J.J. Fernandez , D.E.W. Vaughan , and P.A. Midgley : Three-dimensional nanoparticle distribution and local curvature of heterogeneous catalysts revealed by electron tomography. J. Phys. Chem. C. 111, 11501 (2007).

64. M. Weyland , P.A. Midgley , and J.M. Thomas : Electron tomography of nanoparticle catalysts on porous supports: A new technique based on Rutherford scattering. J. Phys. Chem. B 105, 7882 (2001).

65. L.C. Gontard , R.E. Dunin-Borkowski , R.K.K. Chong , D. Ozkaya , and P.A. Midgley : Electron tomography of Pt nanocatalyst particles and their carbon support. J. Phys. Conf. Ser. 26, 203 (2006).

66. J.S. Barnard , J. Sharp , J.R. Tong , and P.A. Midgley : High-resolution three-dimensional imaging of dislocations. Science 313, 319 (2006).

69. M. Tanaka , K. Higashida , K. Kaneko , S. Hata , and M. Mitsuhara : Crack tip dislocations revealed by electron tomography in silicon single crystal. Scr. Mater. 59, 901 (2008).

70. C. Phatak , M. Beleggiab , and M.D. Graef : Vector field electron tomography of magnetic materials: Theoretical development. Ultramicroscopy 108, 503 (2008).

71. C. Phatak , M.D. Graef , A. Petford-Long , M. Tanase , and A. Imre : Reconstruction of 3D magnetic induction using Lorentz TEM. Microsc. Microanal. 14, 1055 (2008).

72. C. Phatak , M. Tanase , A.K. Petford-Long , and M. De Graef : Determination of magnetic vortex polarity from a single Lorentz Fresnel image. Ultramicroscopy 109, 264 (2009).

73. W. Baumeister : Electron tomography: Towards visualizing the molecular organization of the cytoplasm. Curr. Opin. Struct. Biol. 12, 679 (2002).

76. I. Arslan , J.C. Walmsley , E. Rytter , E. Bergene , and P.A. Midgley : Toward three-dimensional nanoengineering of heterogeneous catalysts. J. Am. Chem. Soc. 130, 5716 (2008).

77. H. Friedrich , P.E. De Jongh , A.J. Verkleij , and K.P. De Jong : Electron tomography for heterogeneous catalysts and related nanostructured materials. Chem. Rev. 109, 1613 (2009).

78. A.B. Hungria , D. Eder , A.H. Windle , and P.A. Midgley : Visualization of the three-dimensional microstructure of TiO2 nanotubes by electron tomography. Catal. Today 143, 225 (2009).

80. K. Yoshida , Y.H. Ikuhara , S. Takahashi , T. Hirayama , T. Saito , S. Sueda , N. Tanaka , and P.L. Gai : The three-dimensional morphology of nickel nanodots in amorphous silica and their role in high-temperature permselectivity for hydrogen separation. Nanotechnology 20, 315703 (2009).

81. M. Weyland , T.J.V. Yates , R.E. Dunin-Borkowski , L. Laffont , and P.A. Midgley : Nanoscale analysis of three-dimensional structures by electron tomography. Scr. Mater. 55, 29 (2006).

82. V. Ortalan , M. Herrera , D.G. Morgan , N.D. Browning : Application of image processing to STEM tomography of low contrast materials. Ultramicroscopy 110, 67 (2009).

86. K. Kaneko , R. Nagayama , K. Inoke , E. Noguchi , and Z. Horita : Application of three-dimensional electron tomography using bright-field imaging: Two types of Si-phases in Al-Si alloy. Sci. Technol. Adv. Mater. 7, 726 (2006).

87. M. Tanaka , M. Honda , M. Mitsuhara , S. Hata , K. Kaneko , and K. Higashida : Three-dimensional observation of dislocations by electron tomography in a silicon crystal. Mater. Trans. 49, 1953 (2008).

89. S. Hata , K. Kimura , H. Gao , S. Matsumura , M. Doi , T. Moritani , J.S. Barnard , J.R. Tong , J.H. Sharp , and P.A. Midgley : Electron tomography imaging and analysis of g and g′ domains in Ni-based superalloys. Adv. Mater. (Deerfield Beach Fla.) 20, 1905 (2008).

93. S. Bals , K.J. Batenburg , D. Liang , O. Lebedev , G. Van Tendeloo , A. Aerts , J.A. Martens , and C.E.A. Kirschhock : Quantitative three-dimensional modeling of zeotile through discrete electron tomography. J. Am. Chem. Soc. 131, 4769 (2009).

94. J.R. Jinschek , K.J. Batenburg , H.A. Calderon , R. Kilaas , V. Radmilovic , and C. Kisielowski : 3-D reconstruction of the atomic positions in a simulated gold nanocrystal based on discrete tomography: Prospects of atomic resolution electron tomography. Ultramicroscopy 108, 589 (2008).

95. J. Tong , I. Arslan , and P. Midgley : A novel dual-axis iterative algorithm for electron tomography. J. Struct. Biol. 153, 55 (2006).

99. M. Bar Sadan , L. Houben , S.G. Wolf , A. Enyashin , G. Seifert , R. Tenne , and K. Urban : Toward atomic-scale bright-field electron tomography for the study of fullerene-like nanostructures. Nano Lett. 8, 891 (2008).

102. M.R. Armstrong , K. Boyden , N.D. Browning , G.H. Campbell , J.D. Colvin , W.J. DeHope , A.M. Frank , D.J. Gibson , F. Hartemann , J.S. Kim , W.E. King , T.B. LaGrange , B.J. Pyke , B.W. Reed , R.M. Shuttlesworth , B.C. Stuart , and B.R. Torralva : Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy. Ultramicroscopy 107, 356 (2007).

103. D.J. Flannigan , V.A. Lobastov , and A.H. Zewail : Controlled nanoscale mechanical phenomena discovered with ultrafast electron microscopy. Angew. Chem. Int. Ed. 46, 9206 (2007).

108. O. Bostanjoglo and D. Otte : High-speed electron microscopy of nanocrystallization in Al-Ni films by nanosecond laser pulses. Phys. Status Solidi A Appl. Res. 150, 163 (1995).

109. O. Bostanjoglo , R.P. Tornow , and W. Tornow : Nanosecond-exposure electron microscopy of laser-induced phase transformations. Ultramicroscopy 21, 367 (1987).

116. P.B. Hirsch , R.W. Horne and M.J. Whelan : Direct observations of arrangement and motion of dislocations in aluminium. Philos. Mag. 1, 677 (1956).

117. C.W. Allen : In situ ion- and electron-irradiation effects studies in transmission electron microscopes. Ultramicroscopy 56, 200 (1994).

119. D.F. Pedraza and J. Koike : Dimensional changes in grade H-451 nuclear graphite due to electron irradiation. Carbon 32, 727 (1994).

120. B.W. Smith and D.E. Luzzi : Electron irradiation effects in single wall carbon nanotubes. J. Appl. Phys. 90, 3509 (2001).

121. T. Nagase and Y. Umakoshi : Electron irradiation induced crystallization of supercooled liquid in Zr based alloys. Mater. Trans. 48, 151 (2007).

122. S. Sepulveda-Guzman , N. Elizondo-Villarreal , D. Ferrer , A. Torres-Castro , X. Gao , J.P. Zhou , and M. Jose-Yacaman : In situ formation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope. Nanotechnology 18, 335604 (2007).

124. I. Jencic , M.W. Bench , I.M. Robertson , and M.A. Kirk : Electron-beam-induced crystallization of isolated amorphous regions in Si, Ge, GaP, and GaAs. J. Appl. Phys. 78, 974 (1995).

125. E.P. Butler : In situ experiments in the transmission electron microscope. Rep. Prog. Phys. 42, 833 (1979).

126. D.K. Dewald , T.C. Lee , I.M. Robertson , and H.K. Birnbaum : Dislocation structures ahead of advancing cracks. Metall. Mater. Trans. A, 21, 2411 (1990).

132. C.E. Carlton and P.J. Ferreira : Dislocation motion-induced strain in nanocrystalline materials: Overlooked considerations. Mater. Sci. Eng. A 486, 672 (2008).

133. J. Deneen , W.M. Mook , A. Minor , W.W. Gerberich , and C.B. Carter : In situ deformation of silicon nanospheres. J. Mater. Sci. 41, 4477 (2006).

137. T.C. Lee , D.K. Dewald , J.A. Eades , I.M. Robertson , and H.K. Birnbaum : An environmental cell transmission electron microscope. Rev. Sci. Instrum. 62, 1438 (1991).

138. I.M. Robertson and D. Teter : Controlled environment transmission electron microscopy. J. Microsc. Res. Tech. 42, 260 (1998).

147. P.L. Gai and E.D. Boyes : Advances in atomic resolution in situ environmental transmission electron microscopy and 1A aberration corrected in situ electron microscopy. Microsc. Res. Tech. 72, 153 (2009).

148. I.M. Robertson , H.K. Birnbaum , and P. Sofronis : Hydrogen effects on plasticity, in Dislocations in Solids, edited by J.P. Hirth and L. Kubin (Elsevier, 2009).

149. P. Li , J. Liu , N. Nag , and P.A. Crozier : In situ synthesis and characterization of Ru promoted Co/Al2O3 Fischer-Tropsch catalysts. Appl. Catal. A Gen. 307, 212 (2006).

150. P. Li , J. Liu , N. Nag , and P.A. Crozier : In situ preparation of Ni-Cu/TiO2 bimetallic catalysts. J. Catal. 262, 73 (2009).

153. O. Bostanjoglo and P. Thomsen-Schmidt : Time-resolved TEM of laser-induced structural changes in GeTe films, Appl. Surf. Sci. 46, 392 (1990).

154. T. LaGrange , G.H. Campbell , B. Reed , M. Taheri , J.B. Pesavento , J.S. Kim , and N.D. Browning : Nanosecond time-resolved investigations using the in situ of dynamic transmission electron microscope (DTEM). Ultramicroscopy 108, 1441 (2008).

155. F. Carbone , B. Barwick , K. Oh-Hoon , P. Hyun Soon , J.S. Baskin , and A.H. Zewail : EELS femtosecond resolved in 4D ultrafast electron microscopy. Chem. Phys. Lett. 468, 107 (2009).

156. F. Carbone , K. Oh-Hoon , and A.H. Zewail : Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy. Science 325, 181 (2009).

161. B.W. Reed , T. LaGrange , R.M. Shuttlesworth , D.J. Gibson , G.H. Campbell , and N.D. Browning : Solving the accelerator-condenser coupling problem in a nanosecond dynamic transmission electron microscope. Rev. Sci. Instrum. 81, 053706 (2010).

162. M.K. Miller and R.G. Forbes : Atom probe tomography. Mater. Charact. 60, 461 (2009).

163. G.L. Kellogg and T.T. Tsong : Pulsed-laser atom-probe field-ion microscopy. J. Appl. Phys. 51, 1184 (1980).

167. S. Tin , A.C. Yeh , A.P. Ofori , R.C. Reed , S.S. Babu , and M.K. Miller : Atomic partitioning of ruthenium in Ni-based superalloys, in Superalloys 2004: Proceedings of the Tenth International Symposium on Superalloys. Sponsored by the TMS Seven Springs International Symposium Committee, in Cooperation with the TMS High Temperature Alloys Committee and ASM International, September 19–23, 2004, Seven Springs Mountain Resort in Champion, PA (TMS, Warrendale, PA, 2004).

168. F. Vurpillot , J. Houard , A. Vella , and B. Deconihout : Thermal response of a field emitter subjected to ultra-fast laser illumination. J. Phys. D: Appl. Phys. 42, 125502 (2009).

172. Y.M. Chen , T. Ohkubo , M. Kodzuka , K. Morita , and K. Hono : Laser-assisted atom probe analysis of zirconia/spinel nanocomposite ceramics. Scr. Mater. 61, 693 (2009).

180. M.P. Moody , B. Gault , L.T. Stephenson , D. Haley , and S.P. Ringer : Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. Ultramicroscopy 109, 815 (2009).

183. D. Cullen and I. Baker : Observation of impurities in ice. Microsc. Res. Tech. 55, 198 (2001).

184. D. Cullen and I. Baker : Observation of sulfate crystallites in Vostok accretion ice. Mater. Charact. 48, 263 (2002).

185. I. Baker and D. Cullen : The structure and chemistry of 94 m Greenland Ice Sheet Project 2 ice. Ann. Glaciol. 35, 224 (2002).

189. R. Obbard , D. Iliescu , D. Cullen , J. Chang , and I. Baker : SEM/EDS comparison of polar and seasonal temperate ice. Microsc. Res. Tech. 62, 49 (2003).

193. S. Deville : Freeze-casting of porous ceramics: A review of current achievements and issues. Adv. Eng. Mater. 10, 155 (2008).

194. E.D. Spoerke , N.G.D. Murray , H. Li , L.C. Brinson , D.C. Dunand , and S.I. Stupp : Titanium with aligned, elongated pores for orthopedic tissue engineering applications. J. Biomed. Mater. Res. A 84A, 402 (2008).

199. J. Schwander , T. Sowers , J.M. Barnola , T. Blunier , A. Fuchs , and B. Malaize : Age scale of the air in the summit ice: Implication for glacial-interglacial temperature change. J. Geophys. Res. 102, 19483 (1997).

200. T. Sowers , M. Bender , D. Raynaud , and Y.S. Korotkevich : Delta-N-15 of N2 in air trapped in polar ice—A tracer of gas-transport in the firn and a possible constraint on ice age-gas age-differences. J. Geophys. Res. 97, 15683 (1992).

203. Y.K. Chen , Y.S. Chu , Y. JaeMock , I. McNulty , S. Qun , P.W. Voorhees , and D.C. Dunand : Morphological and topological analysis of coarsened nanoporous gold by x-ray nanotomography. Appl. Phys. Lett. 96, 043122 (2010).

204. B.C. Larson , A. El-Azab , W.G. Yang , J.Z. Tischler , W.J. Liu , and G.E. Ice : Experimental characterization of the mesoscale dislocation density tensor. Philos. Mag. 87, 1327 (2007).

206. J.S. Park , P. Revesz , A. Kazimirov , and M.P. Miller : A methodology for measuring in situ lattice strain of bulk polycrystalline material under cyclic load. Rev. Sci. Instrum. 78, 023910 (2007).

208. J.D. Budai , W. Liu , J.Z. Tischler , Z.W. Pan , D.P. Norton , B.C. Larson , W. Yang , and G.E. Ice : Polychromatic x-ray micro- and nanodiffraction for spatially-resolved structural studies. Thin Solid Films 516, 8013 (2008).

212. R.B. Godiksen , Z.T. Trautt , M. Upmanyu , J. Schiotz , D.J. Jensen , and S. Schmidt : Simulations of boundary migration during recrystallization using molecular dynamics. Acta Mater. 55, 6383 (2007).

213. M.A. Martorano , M.A. Fortes , and A.F. Padilha : The growth of protrusions at the boundary of a recrystallized grain. Acta Mater. 54, 2769 (2006).

214. S. Sreekala and M. Haataja : Recrystallization kinetics: A coupled coarse-grained dislocation density and phase-field approach. Phys. Rev. B 76, 094109 (2007).

217. J. Kacher , I.M. Robertson , M. Nowell , J. Knapp , and K. Hattar : Study of rapid grain boundary migration in a nanocrystalline Ni thin film. Mater. Sci. Eng. A 528, 1628 (2011).

219. D. Ma , A.D. Stoica , X.L. Wang , Z.P. Lu , M. Xu , and M. Kramer : Efficient local atomic packing in metallic glasses and its correlation with glass-forming ability. Phys. Rev. B 80, 014202 (2009).

221. I.C. Noyan and J.B. Cohen : Residual Stress: Measurement by Diffraction and Interpretation, in Springer Series on Materials Research and Engineering, (Springer-Verlag, Berlin New York Heidelberg, 1987).

224. P.J. Bouchard , P.J. Withers , S.A. McDonald , and R.K. Heenan : Quantification of creep cavitation damage around a crack in a stainless steel pressure vessel. Acta Mater. 52, 23 (2004).

226. X.-L. Wang , E.A. Payzanta , B. Taljata , C.R. Hubbarda , J.R. Keisera , and M.J. Jirinecb : Experimental determination of the residual stresses in a spiral weld overlay tube. Mater. Sci. Eng. A 232, 31 (1997).

230. J.A. Wollmershauser , S. Kabra , and S.R. Agnew : In situ neutron diffraction study of the plastic deformation mechanisms of B2 ordered intermetallic alloys: NiAl, CuZn, and CeAg. Acta Mater. 57, 213 (2009).

231. S. Cheng , A.D. Stoica , X.L. Wang , Y. Ren , J. Almer , J.A. Horton , C.T. Liu , B. Clausen , D.W. Brown , P.K. Liaw , and L. Zuo : Deformation crossover: From nano- to mesoscale. Phys. Rev. Lett. 103, 035502 (2009).

236. W. Ludwig , S. Schmidt , E.M. Lauridsen , and H.F. Poulsen : X-ray diffraction contrast tomography: A novel technique for three-dimensional grain mapping of polycrystals. I. Direct beam case. J. Appl. Cryst. 41, 302 (2008).

237. G. Johnson , A. King , M.G. Honnicke , J. Marrow , and W. Ludwig : x-ray diffraction contrast tomography: A novel technique for three-dimensional grain mapping of polycrystals. II. The combined case. J. Appl. Cryst. 41, 310 (2008).

243. M. De Graef , M.V. Kral , and M. Hillert : A modern 3-D view of an “Old” pearlite colony. JOM 58, 25 (2006).

244. A. Mangan , P.D. Lauren , and G.J. Shiflet : Three-dimensional reconstruction of Widmanstatten plates in Fe-12.3Mn-0.8C. J. Microsc. 188, 36 (1997).

248. D.J. Rowenhorst , A. Gupta , C.R. Feng , and G. Spanos : 3D crystallographic and morphological analysis of coarse martensite: Combining EBSD and serial sectioning. Scr. Mater. 55, 11 (2006).

252. M.V. Kral , M.A. Mangan , G. Spanos , and R.O. Rosenberg : Three-dimensional analysis of microstructures. Mater. Charact. 45, 17 (2000).

255. J. Konrad , S. Zaefferer , and D. Raabe : Investigation of orientation gradients around a hard Laves particle in a warm-rolled Fe3Al-based alloy using a 3D EBSD-FIB technique. Acta Mater. 54, 1369 (2006).

256. J. Michael and L. Giannuzzi : Improved EBSD sample preparation via low energy Ga+ FIB ion milling. Microsc. Microanal. 13, 926 (2007).

265. F.J. Humphreys : A new analysis of recovery, recrystallisation, and grain growth. Mater. Sci. and Tech. 15, 37 (1999).

266. O.V. Rofman , P.S. Bate , I. Brough , and F.J. Humphreys : Study of dynamic grain growth by electron microscopy and EBSD. J. Microsc. Oxford 233, 432 (2009).

268. M.L. Taheri , J.T. Sebastian , B.W. Reed , D.N. Seidman , and A.D. Rollett : Site-specific atomic scale analysis of solute segregation to a coincidence site lattice grain boundary. Ultramicroscopy 110, 278 (2009).

271. D. Raabe , M. Sachtleber , H. Weiland , G. Scheele , and Z.S. Zhao : Grain-scale micromechanics of polycrystal surfaces during plastic straining. Acta Mater. 51, 1539 (2003).

272. C. Niederberger , W.M. Mook , X. Maeder and J. Michler : In situ electron backscatter diffraction (EBSD) during the compression of micropillars. Mater. Sci. Eng. A Struct. 527, 4306 (2010).

273. S.J. Dillon and G.S. Rohrer : Characterization of the grain-boundary character and energy distributions of yttria using automated serial sectioning and EBSD in the FIB. J. Am. Ceram. Soc. 92, 1580 (2009).

277. J. Kacher , C. Landon , B.L. Adams , and D. Fullwood : Bragg’s Law diffraction simulations for electron backscatter diffraction analysis. Ultramicroscopy 109, 1148 (2009).

278. P.S. Karamched and A.J. Wilkinson : High resolution electron back-scatter diffraction analysis of thermally and mechanically induced strains near carbide inclusions in a superalloy. Acta Mater. 59, 263 (2011).

279. D.J. Dingley , A.J. Wilkinson , G. Meaden , and P.S. Karamched : Elastic strain tensor measurement using electron backscatter diffraction in the SEM. J. Electron Microsc. (Tokyo) 59, S155 (2010).

281. U. Martin and M. Heilmaier : Novel dispersion strengthened metals by mechanical alloying. Adv. Eng. Mater. 6, 515 (2004).

282. M.K. Miller , D.T. Hoelzer , E.A. Kenik , and K.F. Russell : Stability of ferritic MA/ODS alloys at high temperatures. Intermetallics 13, 387 (2005).

283. J.H. Schneibel , C.T. Liu , M.K. Miller , M.J. Mills , P. Sarosi , M. Heilmaier , and D. Sturm : Ultrafine-grained nanocluster-strengthened alloys with unusually high creep strength. Scr. Mater. 61, 793 (2009).

284. C.L. Fu , M. Krcmar , G.S. Painter , and X.Q. Chen : Vacancy mechanism of high oxygen solubility and nucleation of stable oxygen-enriched clusters in Fe. Phys. Rev. Lett. 99, 225502 (2007).

285. J. Xu , C.T. Liu , M.K. Miller , and H.M. Chen : Nanocluster-associated vacancies in nanocluster-strengthened ferritic steel as seen via positron-lifetime spectroscopy. Phys. Rev. B 79, 020204(R) (2009).

287. L. Yang , M.K. Miller , X.L. Wang , C.T. Liu , A.D. Stoica , D. Ma , J. Almer , and D. Shi : Nanoscale solute partitioning in bulk metallic glasses. Adv. Mater. (Deerfield Beach Fla.) 21, 305 (2009).

288. A. Kulkarni , S. Mehraeen , B.W. Reed , N.L. Okamoto , N.D. Browning , and B.C. Gates : Nearly uniform decaosmium clusters supported on MgO: Characterization by x-ray absorption spectroscopy and scanning transmission electron microscopy. J. Phys. Chem. C 113, 13377 (2009).

289. J.F. Nye : Some geometrical relations in dislocated crystals. Acta Metall. 1, 153 (1953).

290. B.S. El-Dasher , B.L. Adams , and A.D. Rollett : Viewpoint: Experimental recovery of geometrically necessary dislocation density in polycrystals. Scr. Mater. 48, 141 (2003).

294. H.A. Padilla , C.D. Smith , J. Lambros , A.J. Beaudoin , and I.M. Robertson : Effects of deformation twinning on energy dissipation in high rate deformed zirconium. Metall. Mater. Trans. A 38, 2916 (2007).

298. Y. Xiang , D.J. Srolovitz , L.T. Cheng , and E. Weinan : Level set simulations of dislocation-particle bypass mechanisms. Acta Mater. 52, 1745 (2004).

302. B.D. Wirth , V.V. Bulatov , and T. De La Diaz Rubia : Dislocation-stacking fault tetrahedron interactions in Cu. J. Eng. Mater. Trans. ASME 124, 329 (2002).

305. A.J. Detor and C.A. Schuh : Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: Atomistic computer simulations in the Ni-W system. Acta Mater. 55, 4221 (2007).

307. M. Hernandez-Mayoral , Z. Yao , M.L. Jenkins , and M.A. Kirk : Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 2: Damage evolution in thin-foils at higher doses. Philos. Mag. 88, 2881 (2008).

308. M.L. Jenkins , Z. Yao , M. Hernandez-Mayoral , and M.A. Kirk : Dynamic observations of heavy-ion damage in Fe and Fe-Cr alloys. J. Nucl. Mater. 389, 197 (2009).

313. S. Lozano-Perez , T. Yamada , T. Terachi , M. Schroder , C.A. English , G.D.W. Smith , C.R.M. Grovenor , and B.L. Eyre : Multi-scale characterization of stress-corrosion cracking of cold-worked stainless steels and the influence of Cr content. Acta Mater. 57, 5361 (2009).

315. P.L. Andresen , P.H. Chou , M.M. Morra , J. Lawrence Nelson , and R.B. Rebak : Microstructural and stress-corrosion cracking characteristics of austenitic stainless steels containing silicon. Metall. Mater. Trans. A 40, 2824 (2009).

319. S. Lozano-Perez , P. Rodrigo , and L. Gontard : Three-dimensional characterization of stress corrosion cracks. J. Nucl. Mater. 408, 289 (2011).

323. R. Gemma , T. Al-Kassab , R. Kirchheim , and A. Pundt : APT analyses of deuterium-loaded Fe/V multi-layered films. Ultramicroscopy 109, 631 (2009).

324. J. Takahashia , K. Kawakamia , Y. Kobayashia , and T. Taruib : The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography. Scr. Mater. 63, 261 (2010).

325. Y. Kihn , C. Mirguet , and L. Calmels : EELS studies of Ti-bearing materials and ab initio calculations. J. Electron Spectros. Relat. Phenom. 143, 119 (2005).

329. H.J. Bunge and R.A. Schwarzer : Orientation stereology—A new branch in texture research. Adv. Eng. Mater. 3, 25 (2001).

332. C.A. Schuh and M. Frary : Correlations beyond the nearest-neighbor level in grain boundary networks. Scr. Mater. 54, 1023 (2006).

334. M. Frary and C.A. Schuh : Grain boundary networks: Scaling laws, preferred cluster structure, and their implications for grain boundary engineering. Acta Mater. 53, 4323 (2005).

335. M. Frary and C.A. Schuh : Connectivity and percolation behaviour of grain boundary networks in three dimensions. Philos. Mag. 85, 1123 (2005).

336. C.A. Schuh , M. Kumar , and W.E. King : Analysis of grain boundary networks and their evolution during grain boundary engineering. Acta Mater. 51, 687 (2003).

337. C.A. Schuh , M. Kumar , and W.E. King : Universal features of grain boundary networks in FCC materials. J. Mater. Sci. 40, 847 (2005).

340. C.D.W. Van Siclen : Intergranular fracture in model polycrystals with correlated distribution of low-angle grain boundaries. Phys. Rev. B 73, 184118 (2006).

341. X.M. Bai , A.F. Voter , R.G. Hoagland , M. Nastasi , and B.P. Uberuaga : Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327, 1631 (2010).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 7
Total number of PDF views: 32 *
Loading metrics...

Abstract views

Total abstract views: 235 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th March 2017. This data will be updated every 24 hours.