Skip to main content
×
Home
    • Aa
    • Aa

Towards electroformed nanostructured aluminum alloys with high strength and ductility

  • Shiyun Ruan (a1) and Christopher A. Schuh (a1)
Abstract
Abstract

Nanostructured Al–Mn alloys are proposed as high-strength low-density materials, which can be electroformed (i.e., produced electrolytically and removed from the substrate) from ionic liquid. A variety of current waveforms, including direct current (DC) and pulsed current (PC), are used to electrodeposit nanostructured Al–Mn alloys, with some PC methods producing significant improvements in film ductility. Transmission electron microscopy observations point to a number of structural advantages induced by PC that apparently ductilize the Al–Mn alloys: (i) grain refinement to the nanocrystalline range without the introduction of a competing amorphous phase, (ii) unimodal nanocrystalline grain size distribution, and (iii) more homogeneous structure. The significant increase in apparent ductility in the PC alloys is also apparently related to stress- or deformation-induced grain growth, which leads to alloys with unique combinations of specific hardness and film ductility.

Copyright
Corresponding author
b)Address all correspondence to this author. e-mail: schuh@mit.eduThis author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/
References
Hide All
1. A. Inoue : Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci. 43, 365 (1998).

2. K.M. Youssef , R.O. Scattergood , K.L. Murty , and C.C. Koch : Nanocrystalline Al-Mg alloy with ultrahigh strength and good ductility. Scr. Mater. 54, 251 (2006).

3. P.V. Liddicoat , L. Xiao-Zhou , Z. Yonghao , Z. Yuntian , M.Y. Murashkin , E.J. Lavernia , R.Z. Valiev , and S.P. Ringer : Nanostructural hierarchy increases the strength of aluminium alloys. Nat. Commun. 1(63), 17 (2010).

4. Y. Kawamura , H. Mano , and A. Inoue : Nanocrystalline aluminum bulk alloys with a high strength of 1420 MPa produced by the consolidation of amorphous powders. Scr. Mater. 44, 1599 (2001).

5. T. Topping , B. Ahn , Y. Li , S. Nutt , and E. Lavernia : Influence of process parameters on the mechanical behavior of an ultrafine-grained Al alloy. Metall. Mater. Trans. A 43, 505 (2012).

6. B. Ahn , R. Mitra , E.J. Lavernia , and S.R. Nutt : Effect of grain size on strain rate sensitivity of cryomilled Al-Mg alloy. J. Mater. Sci. 45, 4790 (2010).

7. Y. Li , Y.H. Zhao , V. Ortalan , W. Liu , Z.H. Zhang , R.G. Vogt , N.D. Browning , E.J. Lavernia , and J.M. Schoenung : Investigation of aluminum-based nanocomposites with ultra-high strength. Mater. Sci. Eng. A 527, 305 (2009).

8. T.T. Sasaki , T. Ohkubo , and K. Hono : Microstructure and mechanical properties of bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering. Acta Mater. 57, 3529 (2009).

9. B.J. Yang , J.H. Yao , J. Zhang , H.W. Yang , J.Q. Wang , and E. Ma : Al-rich bulk metallic glasses with plasticity and ultrahigh specific strength. Scr. Mater. 61, 423 (2009).

10. Y.H. Zhao , X.Z. Liao , S. Cheng , E. Ma , and Y.T. Zhu : Simultaneously increasing the ductility and strength of nanostructured alloys. Adv. Mater. 18, 2280 (2006).

11. Y.T. Zhu and T.G. Langdon : The fundamentals of nanostructured materials processed by severe plastic deformation. JOM 56, 58 (2004).

12. E. Ma : Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys. JOM 58, 49 (2006).

13. J. Schiotz , F.D. Di Tolla , and K.W. Jacobsen : Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561 (1998).

14. T.G. Nieh and J. Wadsworth : Hall-Petch relation in nanocrystalline solids. Scr. Metall. Mater. 25, 955 (1991).

15. H. Gleiter : Nanocrystalline materials. Prog. Mater. Sci. 33, 223 (1989).

16. W. Laslouni , K. Taibi , D. Dahmoun , and M. Azzaz : Structure and properties of nanocrystalline Cu70Fe18Co12 obtained by mechanical alloying. J. Non-Cryst. Solids 353, 2090 (2007).

18. E. Hellstern , H.J. Fecht , Z. Fu , and W.L. Johnson : Structural and thermodynamic properties of heavily mechanically deformed Ru and AlRu. J. Appl. Phys. 65, 305 (1989).

19. M. Stueber , H. Holleck , H. Leiste , K. Seemann , S. Ulrich , and C. Ziebert : Concepts for the design of advanced nanoscale PVD multilayer protective thin films. J. Alloys Compd. 483, 321 (2009).

20. R.Z. Valiev , R.K. Islamgaliev , and I.V. Alexandrov : Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103 (2000).

21. H. Hahn : Gas phase synthesis of nanocrystalline materials. Nanostruct. Mater. 9, 3 (1997).

22. H. Hahn and R.S. Averback : The production of nanocrystalline powders by magnetron sputtering. J. Appl. Phys. 67, 1113 (1990).

23. A.J. Detor and C.A. Schuh : Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater. 55, 371 (2007).

26. F. Ebrahimi , G.R. Bourne , M.S. Kelly , and T.E. Matthews : Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostruct. Mater. 11, 343 (1999).

28. U. Erb : Electrodeposited nanocrystals: Synthesis, properties and industrial applications. Nanostruct. Mater. 6, 533 (1995).

29. H. Natter and R. Hempelmann : Tailor-made nanomaterials designed by electrochemical methods. Electrochim. Acta 49, 51 (2003).

30. K. Boylan , D. Ostrander , U. Erb , G. Palumbo , and K.T. Aust : In-situ TEM study of the thermal stability of nanocrystalline Ni-P. Scr. Metall. Mater. 25, 2711 (1991).

34. T. Hart and A. Watson : Electroforming. Met. Finish. 100, 372 (2002).

35. B. Grushko and G.R. Stafford : Structural study of electrodeposited aluminum-manganese alloys. Metall. Trans. A 20, 1351 (1989).

37. T. Takayama , H. Seto , J. Uchida , and S. Hinotani : Local structure and concentration in Al-Mn alloy electrodeposits. J. Appl. Electrochem. 24, 131 (1994).

44. S.Z. El Abedin , E.M. Moustafa , R. Hempelmann , H. Natter , and F. Endres : Electrodeposition of nano- and microcrystalline aluminium in three different air and water stable ionic liquids. ChemPhysChem 7, 1535 (2006).

45. E.M. Moustafa , S.Z. El Abedin , A. Shkurankov , E. Zschippang , A.Y. Saad , A. Bund , and F. Endres : Electrodeposition of Al in 1-butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)amide and 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide ionic liquids: In situ STM and EQCM studies. J. Phys. Chem. B 111, 4693 (2007).

46. F. Endres , M. Bukowski , R. Hempelmann , and H. Natter : Electrodeposition of nanocrystalline metals and alloys from ionic liquids. Angew. Chem. Int. Ed. 42, 3428 (2003).

47. H. Natter , M. Bukowski , R. Hempelmann , S.Z. El Abedin , E.M. Moustafa , and F. Endres : Electrochemical deposition of nanostructured metals and alloys from ionic liquids. Z. Phys. Chem. 220, 1275 (2006).

48. S.Y. Ruan and C.A. Schuh : Electrodeposited Al-Mn alloys with microcrystalline, nanocrystalline, amorphous and nano-quasicrystalline structures. Acta Mater. 57, 3810 (2009).

49. T. Fujiwara and Y. Igasaki : The effects of pulsing the current in galvanostatic electrodeposition technique on the composition and surface morphology of In-Se films. J. Cryst. Growth 178, 321 (1997).

50. J. Lee , S. Farhangfar , J. Lee , L. Cagnon , R. Scholz , U. Gosele , and K. Nielsch : Tuning the crystallinity of thermoelectric Bi2Te3 nanowire arrays grown by pulsed electrodeposition. Nanotechnology 19, (2008).

51. L. Nikolova , K. Ignatova , and S. Stefanova : Effect of pulsating electrolysis parameters on the morphology and structure of Pd-Ag powder. J. Appl. Electrochem. 26, 1059 (1996).

53. K.P. Wong , K.C. Chan , and T.M. Yue : A study of surface finishing in pulse current electroforming of nickel by utilizing different shaped waveforms. Surf. Coat. Technol. 115, 132 (1999).

54. A.C. Mishra , A.K. Thakur , and V. Srinivas : Effect of deposition parameters on microstructure of electrodeposited nickel thin films. J. Mater. Sci. 44, 3520 (2009).

55. G. Saravanan and S. Mohan : Pulsed electrodeposition of microcrystalline chromium from trivalent Cr-DMF bath. J. Appl. Electrochem. 39, 1393 (2009).

56. Q. Zhu and C.L. Hussey : Galvanostatic pulse plating of Cu-Al alloy in a room-temperature chloroaluminate molten salt—rotating ring-disk electrode studies. J. Electrochem. Soc. 148, C395 (2001).

57. F. Giro , K. Bedner , C. Dhum , J.E. Hoffmann , S.P. Heussler , L. Jian , U. Kirsch , H.O. Moser , and M. Saumer : Pulsed electrodeposition of high aspect-ratio NiFe assemblies and its influence on spatial alloy composition. Microsyst. Technol. 14, 1111 (2008).

58. J.-Y. Fei and G.D. Wilcox : Electrodeposition of Zn-Co alloys with pulse containing reverse current. Electrochim. Acta 50, 2693 (2005).

59. S. Ruan and C.A. Schuh : Mesoscale structure and segregation in electrodeposited nanocrystalline alloys. Scr. Mater. 59, 1218 (2008).

61. I. French and P. Weinrich : The effects of hydrostatic pressure on the mechanism of tensile fracture of aluminum. Metall. Mater. Trans. A 6, 1165 (1975).

62. S. Ruan , K.L. Torres , G.B. Thompson , and C.A. Schuh : Gallium-enhanced phase contrast in atom probe tomography of nanocrystalline and amorphous Al-Mn alloys. Ultramicroscopy 111, 1062 (2011).

63. H. Van Swygenhoven and P.M. Derlet : Grain-boundary sliding in nanocrystalline fcc metals. Phys. Rev. B 64, 224105 (2001).

64. Z. Shan , E.A. Stach , J.M.K. Wiezorek , J.A. Knapp , D.M. Follstaedt , and S.X. Mao : Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654 (2004).

65. Y.B. Wang , J.C. Ho , X.Z. Liao , H.Q. Li , S.P. Ringer , and Y.T. Zhu : Mechanism of grain growth during severe plastic deformation of a nanocrystalline Ni–Fe alloy. Appl. Phys. Lett. 94, 011908 (2009).

66. M. Legros , D.S. Gianola , and K.J. Hemker : In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater. 56, 3380 (2008).

68. S. Ni , Y.B. Wang , X.Z. Liao , S.N. Alhajeri , H.Q. Li , Y.H. Zhao , E.J. Lavernia , S.P. Ringer , T.G. Langdon , and Y.T. Zhu : Grain growth and dislocation density evolution in a nanocrystalline Ni-Fe alloy induced by high-pressure torsion. Scr. Mater. 64, 327 (2011).

69. M. Dao , L. Lu , R.J. Asaro , J.T.M. De Hosson , and E. Ma : Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041 (2007).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 19 *
Loading metrics...

Abstract views

Total abstract views: 134 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th October 2017. This data will be updated every 24 hours.