Skip to main content
×
Home
    • Aa
    • Aa

Transparent-conducting, gas-sensing nanostructures (nanotubes, nanowires, and thin films) of titanium oxide synthesized at near-ambient conditions

  • Jing-Jong Shyue (a1), Rebecca E. Cochran (a1) and Nitin P. Padture (a1)
Abstract

A template-based, electroless wet-chemical method for synthesis of nanotubes and nanowires of nanocrystalline anatase titanium oxide (titania) at 45 °C is reported. Single-nanowire electrical property measurements reveal low dc resistivities (7–21 × 10−4 Ω cm) in these titania nanowires. In the presence of 1000 parts per million of CO gas at 100 °C, the resistivity is found to increase reversibly, indicating low-temperature gas-sensing capability in these titania nanowires. Thin films of nanocrystalline anatase titania, deposited using a similar wet-chemical method, also have low room-temperature dc resistivities (6–8 × 10−3 Ω cm), and they are transparent to visible light. Nanostructure-properties relations, together with possible electrical conduction, optical absorption, and gas-sensing mechanisms, are discussed. The ability to fashion transparent-conducting and gas-sensing nanocrystalline anatase titania into nanotubes/nanowires and thin films at near-ambient conditions could open a wider field of applications for titania, including nanoelectronics, chemical sensing, solar cells, large-area windows and displays, invisible security circuits, and incorporation of biomolecules and temperature-sensitive moieties.

Copyright
Corresponding author
b) Address all correspondence to this author. e-mail: padture.1@osu.edu This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs. org/jmr_policy
References
Hide All
1.Fujishima A., Hashimoto K., Watanabe T.: TiO2 Photocatalysis: Fundamentals and Applications (BKC Inc., Tokyo, Japan, 1999).
2.Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).
3.Grätzel M.: Photoelectrochemical cells. Nature 414, 338 (2001).
4.Park C.O., Akbar S.A.: Ceramics for chemical sensing. J. Mater. Sci. 38, 4611 (2003).
5.Varghese O.K., Gong D., Paulose M., Ong K.G., Dickey E.C., Grimes C.A.: Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv. Mater. 15, 624 (2003).
6.Hagfeldt A., Vlachopoulos N., Grätzel M.: Fast electrochromic switching with nanocrystalline oxide semiconductor films. J. Electrochem. Soc. 141 L82 (1994).
7.Topoglidis E., Cass A.E.G., O’Regan B., Durrant J.R.: Immobilisation and biochemistry of proteins on nanoporous TiO2 and ZnO films. J. Electroanal. Chem. 517, 20 (2001).
8.Li J., Hastings G.W. Oxide ceramics: Inert ceramic materials in medicine and dentistry, in Handbook of Biomaterials Properties, edited by Black J., Hastings G.W. (Chapman & Hall, London, 1998), p. 340.
9.Bendavid A., Martin P.J., Jamting A., Takikawa H.: Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition. Thin Solid Films 356, 6 (1999).
10.Buchanan R.C.: Ceramic Materials for Electronics (Marcel Dekker, New York, 1991).
11.Knauth P., Tuller H.L.: Electrical and defect thermodynamic properties of nanocrystalline titanium oxide. J. Appl. Phys. 85, 897 (1999).
12.Krol R. v. d., Tuller H.L.: Electroceramics: The role of interfaces. Solid State Ionics 150, 167 (2002).
13.Kurtz S.R., Gordon R.G.: Chemical vapor deposition of doped TiO2 thin films. Thin Solid Films 147, 167 (1987).
14.Wang Z.L.: Nanowires and Nanobelts: Materials, Properties and Devices (Kluwer Academic Publishers, New York, 2003).
15.Lieber C.M.: Nanoscale science and technology: Building big future from small things. MRS Bull. 28, 486 (2003).
16.Xia Y., Yang P., Sun Y., Wu Y., Mayers B., Gates B., Yin Y., Kim F., Yan H.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003).
17.Kolmakov A., Moskovits M.: Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu. Rev. Mater. Sci. 34, 151 (2004).
18.Tresback J.S., Vasiliev A.L., Padture N.P.: Engineered metal-oxide-metal heterojunction nanowires. J. Mater. Res. 20, 2613 (2005).
19.Shyue J-J., Padture N.P.: Template-directed, near-ambient synthesis of Au-TiO2-Au heterojunction nanowires mediated by self-assembled monolayers (SAMs). Mater. Lett. (2006, in press) doi: 10.1016/j.matlet.2006.04.100.
20.Kasuga T., Hiramatsu M., Hoson A., Sekino T., Niihara K.: Formation of titanium oxide nanotube. Langmuir 14, 3160 (1998).
21.Yuan Z.Y., Su B.L.: Titanium oxide nanotubes, nanofibers and nanowires. Colloids Surf., A 241, 173 (2004).
22.Imai H., Takei Y., Shimizu K., Matsuda M., Hirashima H.: Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J. Mater. Chem. 9, 2971 (1999).
23.Hulteen J.C., Martin C.R.: A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 7, 1075 (1997).
24.Michailowski A., AlMawlawi D., Cheng G., Moskovits M.: Highly regular anatase nanotuble arrays fabricated in porous anodic template. Chem. Phys. Lett. 349, 1 (2001).
25.Miao Z., Xu D.S., Ouyang J.H., Guo G.L., Zhao X.S., Tang Y.Q.: Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires. Nano Lett. 2, 717 (2002).
26.Limmer S.L., Cao G.Z.: Sol-gel electrophoretic deposition for the growth of oxide nanorods. Adv. Mater. 15, 427 (2003).
27.Zhang X.Y., Yao B.D., Zhao L.X., Liang C.H., Zhang L.D., Mao Y.Q.: Electrochemical fabrication of single-crystalline anatase TiO2 nanowire arrays. J. Electrochem. Soc. 148 G398 (2001).
28.Lei Y., Zhang L.D., Fan J.C.: Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3. Chem. Phys. Lett. 338, 231 (2001).
29.Liu S., Huang K.: Straightforward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate. Sol. Energy Mater. 85, 125 (2005).
30.Pradhan S.K., Reucroft P.J., Yang F.Q., Dozier A.: Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J. Cryst. Growth 256, 83 (2003).
31.Xiang B., Zhang Y., Wang Z., Luo X.H., Zhu Y.W., Zhang H.Z., Yu D.P.: Field-emission properties of TiO2 nanowire arrays. J. Appl. Phys. D38, 1152 (2005).
32.Lin H., Kozuka H., Yoko T.: Electrical properties of transparent doped oxide films. J. Sol-Gel Sci. Technol. 19, 529 (2000).
33.Furubayashi Y., Hitosugi T., Yamamoto Y., Inaba K., Kinoda G., Hirose Y., Shimada T., Hasegawa T.: A transparent metal: Nb-doped anatase TiO2. Appl. Phys. Lett. 86, 252101 (2005).
34.Hitosugi T., Furubayashi Y., Ueda A., Itabashi K., Inaba K., Hirose Y., Kinoda G., Yamamoto Y., Shimada T., Hasegawa T.: Ta-doped anatase TiO2 epitaxial film as transparent conducting oxide. Jpn. J. Appl. Phys. 44 L1063 (2005).
35.Gordon R.G.: Criteria for choosing transparent conductors. MRS Bull. 25, 52 (2000).
36.Ellmer K.: Resistivity of polycrystalline zinc oxide films: Current status and physical limits. J. Phys. D: Appl. Phys. 34, 3097 (2001).
37.Granqvist C.G., Hultaker A.: Transparent and conducting ITO films: New developments and applications. Thin Solid Films 411, 1 (2002).
38.Masuda Y., Sugiyama T., Seo W.S., Koumoto K.: Deposition mechanism of anatase TiO2 on self-assembled monolayers from an aqueous solution. Chem. Mater. 15, 2469 (2003).
39.Ishimaru A.: Wave Propagation and Scattering in Random Media (John Wiley & Sons, Inc., New York, 1999).
40.Gopal V., Radmilovic V.R., Daraio C., Jin S., Yang P.D., Stach E.A.: Rapid prototyping of site-specific nanocontacts by electron and ion beam assisted direct-write nanolithography. Nano Lett. 4, 2059 (2004).
41.Reed J.S.: Principles of Ceramics Processing, 2nd ed. (John Wiley & Sons, New York, 1995).
42.Deki S., Aoi Y., Hiroi O., Kajinami A.: Titanium (IV) oxide thin films prepared from aqueous solution. Chem. Lett. (Jpn.) 6, 433 (1996).
43.Kishimoto H., Takahama K., Hashimoto N., Aoi Y., Deki S.: Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD). J. Mater. Chem. 8, 2019 (1998).
44.Comini E., Faglia G., Sberveglieria G., Pan Z., Wang Z.L.: Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81, 1869 (2002).
45.Wan Q., Qh Q.H.L., Chen Y.J., Wang T.H., He X.L., Li J.P., Lin C.L.: Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84, 3654 (2004).
46.Kolmakov A., Zhang Y., Cheng G., Moskovits M.: Detection of CO and O2 using tin oxide nanowire sensors. Adv. Mater. 15, 997 (2003).
47.Li C., Zhang D., Liu X., Han S., Tang T., Han J., Zhou C.: In2O3 nanowires as chemical sensors. Appl. Phys. Lett. 82, 1613 (2003).
48.Yu C., Hao Q., Saha S., Shi L., Kong X.K., Wang Z.L.: Integration of metal oxide nanobelts with microsystems for nerve detection. Appl. Phys. Lett. 86, 63101 (2005).
49.Fan Z.Y., Lu J.G.: Gate-refreshable nanowire chemical sensors. Appl. Phys. Lett. 86, 123510 (2005).
50.Varghese O.K., Mor G.K., Grimes C.A., Paulose M., Mukherjee N.: A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. J. Nanosci. Nanotechnol. 4, 733 (2004).
51.Jobin M., Taborelli M., Descouts P.: Structural characterization of oxidized titanium surfaces. J. Appl. Phys. 77, 5149 (1995).
52.Viornery C., Chevolot Y., Leonard D., Aronsson B.O., Pechy P., Mathieu H.J., Descouts P., Grätzel M.: Surface modification of titanium with phosphonic acid to improve bone bonding: Characterization by XPS and ToF-SIMS. Langmuir 18, 2582 (2002).
53.Cai K., Muller M., Bosset J., Rechtenbach A., Jandt K.D.: Surface structure and composition of flat titanium thin films as a function of film thickness and evaporation rate. Appl. Surf. Sci. 250, 252 (2005).
54.Razgon A., Sukenik C.N.: Ceramic coatings for fiber matrix composites: Titania thin film on bismaleimide-glass fiber composites. J. Mater. Res. 20, 2544 (2005).
55.Niesen T.P., DeGuire M.R.: Review: Deposition of ceramic thin films at low temperatures from aqueous solutions. J. Electroceram. 6, 169 (2001).
56.Singh J., Shimakawa K.: Advances in Amorphous Semiconductors (CRC Press, Boca Raton, FL, 2003).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 65 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.