Skip to main content
×
×
Home

Twin-mediated crystal growth

  • Ashwin J. Shahani (a1) and Peter W. Voorhees (a1)
Abstract

The structure and origin of twin defects have been studied over the past half-century. Recently, there has been renewed interest in investigating the mechanisms by which twin defects facilitate the growth of bulk and nanoscale systems. This article reviews our understanding and experimental advances to unravel the complex role that twin defects play during crystal growth. The following topics are addressed: growth promotion at single and multiple, parallel and antiparallel twin boundaries; the role of {100} and {111} solid–liquid interfaces during crystallization; the application of realtime imaging to the study of crystal growth in the presence of twin defects; and suggested future research needed to shed light on the driving forces for twin-related phenomena. By providing a broad survey of the existing literature on twin-assisted crystal growth, we anticipate that our review will aid researchers in deciphering various growth forms that arise in materials processing applications.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: shahani@u.northwestern.edu
References
Hide All
1. Bardeen, J. and Brattain, W.H.: The transistor, a semi-conductor triode. Phys. Rev. 74, 230 (1948).
2. Shockley, W.: The theory of p–n junctions in semiconductors and p–n junction transistors. Bell Syst. Tech. J. 28, 435 (1949).
3. Hurle, D.T.J. and Rudolph, P.: A brief history of defect formation, segregation, faceting, and twinning in melt-grown semiconductors. J. Cryst. Growth 264, 550 (2004).
4. Mullin, J.B.: Progress in the melt growth of III–V compounds. J. Cryst. Growth 264, 578 (2004).
5. Friedel, G.: Leçons de Cristallographie (Berger-Levrault, Paris, France, 1926).
6. Cahn, R.W.: Twinned crystals. Adv. Phys. 3, 363 (1954).
7. Hahn, T. and Klapper, H.: Twinning of Crystals, Chap. 3.3 (Wiley, Dordrecht, The Netherlands, 2006); pp. 393448.
8. Beyerlein, I.J., Zhang, X., and Misra, A.: Growth twins and deformation twins in metals. Annu. Rev. Mater. Res. 44, 329 (2014).
9. Christian, J.W. and Mahajan, S.: Deformation twinning. Prog. Mater. Sci. 39, 1 (1995).
10. Fujiwara, K., Fukuda, H., Usami, N., Nakajima, K., and Uda, S.: Growth mechanism of the Si 〈110〉 faceted dendrite. Phys. Rev. B: Condens. Matter Mater. Phys. 81, 224106 (2010).
11. Fujiwara, K., Maeda, K., Usami, N., and Nakajima, K.: Growth mechanism of Si-faceted dendrites. Phys. Rev. Lett. 101, 0555031 (2008).
12. Gamalski, A.D., Voorhees, P.W., Ducati, C., Sharma, R., and Hofmann, S.: Twin plane re-entrant mechanism for catalytic nanowire growth. Nano Lett. 14, 1288 (2014).
13. Hamilton, D.R. and Seidensticker, R.G.: Propagation mechanism of germanium dendrites. J. Appl. Phys. 31, 1165 (1960).
14. Ming, N-B.: Defect mechanisms of crystal growth and their kinetics. J. Cryst. Growth 128, 104 (1993).
15. Ming, N-B. and Sunagawa, I.: Twin lamellae as possible self-perpetuating step sources. J. Cryst. Growth 87, 13 (1988).
16. Van de Waal, B.W.: Comment on “Anisotropic growth of twinned cubic crystals”. Phys. Rev. B: Condens. Matter Mater. Phys. 51, 8653 (1995).
17. Van de Waal, B.W.: Cross-twinning model of FCC crystal growth. J. Cryst. Growth 158, 153 (1996).
18. Wagner, R.S.: On the growth of germanium dendrites. Acta Metall. 8, 57 (1960).
19. Gibbs, J.W.: On the Equilibrium of Heterogeneous Substances, Collected Works (Longmans-Green, New York, New York, 1928).
20. Shahani, A.J., Gulsoy, E.B., Poulsen, S.O., Xiao, X., and Voorhees, P.W.: Twin-mediated crystal growth: An enigma resolved. Sci. Rep. 6, 28651 (2016).
21. Shahani, A.J., Gulsoy, E.B., Roussochatzakis, V.J., Gibbs, J.W., Fife, J.L., and Voorhees, P.W.: The dynamics of coarsening in highly anisotropic systems: Si particles in Al–Si liquids. Acta Mater. 97, 325 (2015).
22. Shahani, A.J., Xiao, X., Skinner, K., Peters, M., and Voorhees, P.W.: Ostwald ripening of faceted Si particles in an Al–Si–Cu melt. Mater. Sci. Eng., A 673, 307 (2016).
23. Lu, S-Z. and Hellawell, A.: The mechanism of silicon modification in aluminum–silicon alloys: Impurity induced twinning. Metall. Trans. A 18, 1721 (1987).
24. Lee, J-W., Chung, U-J., Hwang, N.M., and Kim, D-Y.: Growth process of the ridge-trough faces of a twinned crystal. Acta Cryst. A61, 405 (2005).
25. Kelly, A.A. and Knowles, K.M.: Crystallography and Crystal Defects (Wiley-Verlag, Cambridge, England, 2012).
26. Hofmeister, H.: Forty years study of fivefold twinned structures in small particles and thin films. Cryst. Res. Technol. 33, 3 (1998).
27. Marks, L.D. and Howie, A.: Multiply-twinned particles in silver catalysts. Nature 282, 196 (1979).
28. Fregola, R.N. and Scandale, E.: Cross-twinning in a natural spinel from Sri Lanka. Phys. Chem. Minerals 34, 529 (2007).
29. Marks, L.D.: Surface structure and energetics of multiply twinned particles. Philos. Mag. A 49, 81 (1984).
30. Howie, A. and Marks, L.D.: Elastic strains and the energy balance for multiply twinned particles. Philos. Mag. A 49, 95 (1984).
31. Kurtuldu, G., Jarry, P., and Rappaz, M.: Influence of Cr on the nucleation of primary Al and formation of twinned dendrites in Al–Zn–Cr alloys: Can icosahedral solid clusters play a role? Acta Mater. 61, 7098 (2013).
32. Shechtman, D., Blech, I., Gratias, D., and Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951 (1984).
33. Pauling, L.: So-called icosahedral and decagonal quasicrystals are twins of an 820-atom cubic crystal. Phys. Rev. Lett. 58, 365 (1987).
34. Janot, C.: Quasicrystals: A Primer (Oxford University Press, Oxford, England, 1992).
35. Jagannathan, R., Mehta, R.V., Timmons, J.A., and Black, D.L.: Anisotropic growth of twinned cubic crystals. Phys. Rev. B: Condens. Matter Mater. Phys. 48, 13261 (1993).
36. Jackson, K.A.: Kinetic Processes: Crystal Growth, Diffusion, and Phase Transformations in Materials (Wiley-Verlag, Weinheim, Germany, 2004).
37. Beatty, K.M. and Jackson, K.A.: Monte Carlo modeling of silicon crystal growth. J. Cryst. Growth 211, 13 (2011).
38. Ratke, L. and Voorhees, P.W.: Growth and Coarsening: Ripening in Materials Processing (Springer Verlag, Heidelberg, Germany, 2002).
39. Bögels, G., Buijnsters, J.G., Verhaeren, S.A.C., Meekes, H., Bennema, P., and Bollen, D.: Morphology and growth mechanism of multiply twinned AgBr and AgCl needle crystals. J. Cryst. Growth 203, 554 (1999).
40. Goessens, C., Schryvers, D., Landuyt, J.V., and Amelinckx, S.: Characterization of crystal defects in mixed tabular silver halide grains by conventional transmission electron microscopy and x-ray diffractometry. J. Cryst. Growth 110, 930 (1991).
41. Hamilton, J.F. and Brady, L.E.: Twinning and growth of silver bromide microcrystals. J. Appl. Phys. 35, 414 (1963).
42. Jagannathan, S., Chen, S., Mehta, R.V., and Jagannathan, R.: Direct observation of rough-smooth twin structure in silver halides by high-resolution electron microscopy. Phys. Rev. B: Condens. Matter Mater. Phys. 53, 9 (1995).
43. Fujiwara, K., Obinata, Y., Ujihara, T., Usami, N., Sazaki, G., and Nakajima, K.: In-situ observations of melt growth behavior of polycrystalline silicon. J. Cryst. Growth 262, 124 (2004).
44. Reinhart, G., Buffet, A., Nyugen-Thi, H., Billia, B., Jung, H., Mangelinck-Nöel, N., Bergeon, N., Schenk, T., Härtwig, J., and Baruchel, J.: In-situ and real-time analysis of the formation of strains and microstructure defects during solidification of Al-3.5 wt pct Ni alloys. Metall. Mater. Trans. A 39, 865 (2008).
45. Tandjaoui, A., Mangelinck-Nöel, N., Reinhart, G., Furtera, J-J., Billia, B., Lafford, T., Baruchel, J., and Guichard, X.: Real time observation of the directional solidification of multicrystalline silicon: X-ray imaging characterization. Energy Procedia 27, 82 (2012).
46. Yang, X., Fujiwara, K., Gotoh, R., Maeda, K., Nozawa, J., Koizumi, H., and Uda, S.: Effect of twin spacing on the growth velocity of Si faceted dendrites. Appl. Phys. Lett. 97, 172104 (2010).
47. Yang, X., Fujiwara, K., Maeda, K., Nozawa, J., Koizumi, H., and Uda, S.: Dependence of Si faceted dendrite growth velocity on undercooling. Appl. Phys. Lett. 98, 012113 (2011).
48. Fujiwara, K., Tokairin, M., Pan, W., Koizumi, H., Nozawa, J., and Uda, S.: Instability of crystal/melt interface including twin boundaries of silicon. Appl. Phys. Lett. 104, 182110 (2014).
49. Mullins, W.W. and Sekerka, R.F.: Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys. 34, 323 (1963).
50. Mullins, W.W. and Sekerka, R.F.: Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys. 35, 444 (1964).
51. Senechal, M.: The genesis of growth twins. Sov. Phys. Crystallogr. 25, 520 (1980).
52. Wang, R-Y., Lu, W-H., and Hogan, L.M.: Faceted growth of silicon crystals in Al–Si alloys. Metall. Mater. Trans. A 28, 1233 (1997).
53. Fujiwara, K., Maeda, K., Usami, N., Sazaki, G., Nose, Y., and Nakajima, K.: Hahanism of parallel twins related to Si-facetted dendrite growth. Scr. Mat. 57, 81 (2007).
54. Gleiter, H.: Microstructure. In Physical Metallurgy, Cahn, R.W. and Haasen, P. eds.; North Holland: Amsterdam, The Netherlands, 1996.
55. Tandjaoui, A., Mangelinck-Nöel, N., Reinhart, G., Billia, B., and Guichard, X.: Twinning occurrence and grain competition in multi-crystalline silicon during solidification. C. R. Phys. 14, 141 (2013).
56. Riberi-Béridot, T., Mangelinck-Nöel, N., Tandjaoui, A., Reinhart, G., Billia, B., Lafford, T., Baruchel, J., and Barrallier, L.: On the impact of twinning on the formation of the grain structure of multi-crystalline silicon for photovoltaic applications during directional solidification. J. Cryst. Growth 418, 38 (2015).
57. Tsoutsouva, M.G., Riberi-Béridot, T., Regula, G., Reinhart, G., Baruchel, J., Guittonneau, F., Barrallier, L., and Mangelinck-Nöel, N.: In situ investigation of the structural defect generation and evolution during the directional solidification of 〈110〉 seeded growth Si. Acta Mater. 115, 210 (2016).
58. Duffar, T. and Nadri, A.: On the twinning occurrence in bulk semiconductor crystal growth. Scr. Mater. 62, 955 (2010).
59. Voronkov, V.V.: Processes at the boundary of a crystallization front. Sov. Phys. Crystallogr. 19, 573 (1975).
60. Hurle, D.T.J.: A mechanism for twin formation during Czochralski and encapsulated vertical Bridgman growth of III–V compound semiconductors. J. Cryst. Growth 147, 239 (1995).
61. Randle, V.: Twinning-related grain boundary engineering. Acta Mater. 52, 4067 (2004).
62. Ratanaphan, S., Yoon, Y., and Rohrer, G.S.: The five parameter grain boundary character distribution of polycrystalline silicon. J. Mater. Sci. 49, 4938 (2014).
63. Dai, Y., Zhang, Y., Bai, Y.Q., and Wang, Z.L.: Bicrystalline zinc oxide nanowires. Chem. Phys. Lett. 375, 96 (2003).
64. de la Mata, M., Leturcq, R., Plissard, S.R., Rolland, C., Magén, C., Arbiol, J., and Caroff, P.: Twin-induced InSb nanosails: A convenient high mobility quantum system. Nano Lett. 16, 825 (2016).
65. Soo, M.T., Zheng, K., Gao, Q., Tan, H.H., Jagadish, C., and Zou, J.: Mirror-twin induced bicrystalline InAs nanoleaves. Nano Res. 9, 766 (2016).
66. Ravi, K.V.: The growth of EFG silicon ribbons. J. Cryst. Growth 39, 1 (1977).
67. Timpel, M., Wanderka, N., Schlesiger, R., Yamamoto, T., Lazarev, N., Isheim, D., Schmitz, G., Matsumura, S., and Banhart, J.: The role of strontium in modifying aluminium-silicon alloys. Acta Mater. 60, 3920 (2012).
68. Li, J., Hage, F., Wiessner, M., Romaner, L., Scheiber, D., Sartory, B., Ramasse, Q., and Schumacher, P.: The roles of Eu during the growth of eutectic Si in Al–Si alloys. Sci. Rep. 5, 13802 (2015).
69. Nielsen, M.H., Li, D., Zhang, H., Aloni, S., Han, T.Y-J., Frandsen, C., Seto, J., Banfield, J.F., Cölfen, H., and De Yoreo, J.J.: Investigating processes of nanocrystal formation and transformation via liquid cell TEM. Microsc. Microanal. 20, 425 (2014).
70. Burnett, T.L., Kelley, R., Winiarski, B., Contreras, L., Daly, M., Gholinia, A., Burke, M.G., and Withers, P.J.: Large volume serial section tomography by Xe Plasma FIB dual beam microscopy. Ultramicroscopy 161, 119 (2016).
71. Echlin, M.P., Mottura, A., Torbet, C.J., and Pollock, T.M.: A new TriBeam system for three-dimensional multimodal materials analysis. Rev. Sci. Instrum. 83, 023701 (2012).
72. Echlin, M.P., Titus, M., Kraemer, S., and Pollock, T.: EBSD imaging of femtosecond laser ablated surfaces using the TriBeam system. Microsc. Microanal. 19, 864 (2013).
73. Rowenhorst, D.J., Gupta, A., Feng, C.R., and Spanos, G.: 3D crystallographic and morphological analysis of coarse martensite: Combining EBSD and serial sectioning. Scr. Mater. 55, 11 (2006).
74. Uchic, M.D.: Serial sectioning methods for generating 3D characterization data of grain- and precipitate-scale microstructures. In Computational Methods for Microstructure-Property Relationships, Ghosh, S. and Dimiduk, D. eds.; Springer-Verlag: New York, New York, 2011.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed