Skip to main content
×
×
Home

Understanding phase equilibria and segregation in Bridgman growth of Cs2LiYCl6 scintillator

  • Francesco L. Ruta (a1), Stacy Swider (a2), Stephanie Lam (a2) and Robert S. Feigelson (a1)
Abstract

Cs2LiYCl6 (CLYC) is a commercial scintillator material having good energy resolution and dual gamma/neutron detection capabilities. CLYC crystals currently used in detectors are grown by the vertical Bridgman method. Boules grown from stoichiometric melts, however, often contain secondary phases, Cs3YCl6 and LiCl, at the beginning and end of the crystal, respectively, suggesting that this composition is incongruently melting. Since no phase diagram containing CLYC existed in the literature prior to this study, the Cs2YCl5–LiCl phase diagram was explored. Several crystals were then grown from various melt compositions. As predicted from the phase diagram, a starting composition of around 60 mol% LiCl did not produce Cs3YCl6 and maintained a low concentration of LiCl.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: flruta@stanford.edu
Footnotes
Hide All

Contributing Editor: Scott T. Misture

Footnotes
References
Hide All
1. Combes, C.M., Dorenbos, P., van Eijk, C.W.E., Kramer, K.W., and Godel, H.U.: Optical and scintillation properties of pure and Ce3+-doped Cs2LiYCl6 and Li3YCl6:Ce3+ crystals. J. Lumin. 82, 299 (1999).
2. van Loef, E.V.D., Dorenbos, P., van Eijk, C.W.E., Kramer, K.W., and Güdel, H.U.: Scintillation and spectroscopy of the pure and Ce3+-doped elpasolites: Cs2LiYX6 (X = Cl; Br). J. Phys.: Condens. Matter 14, 8481 (2002).
3. Bessiere, A., Dorenbos, P., van Eijk, C.W.E., Kramer, K.W., and Güdel, H.U.: New thermal neutron scintillators: Cs2LiYCl6:Ce and Cs2LiYBr6:Ce. IEEE Trans. Nucl. Sci. 51, 2970 (2004).
4. Bessiere, A., Dorenbos, P., van Eijk, C.W.E., Kramer, K.W., and Güdel, H.U.: Luminescence and scintillation properties of Cs2LiYCl6:Ce for gamma and neutron detection. Nucl. Instrum. Methods Phys. Res., Sect. A 537, 242 (2005).
5. Glodo, J., Hawrami, R., and Shah, K.S.: Development of Cs2LiYCl6 scintillator. J. Cryst. Growth 379, 73 (2013).
6. Roush, M.L., Wilson, M.A., and Hornyak, W.F.: Pulse shape discrimination. Nucl. Instrum. Methods 31, 112 (1964).
7. Higgins, W.M., Glodo, J., Shirwadkar, U., Churilov, A., van Loef, E.V.D., Hawrami, R., Ciampi, G., Hines, C., and Shah, K.S.: Bridgman growth of Cs2LiYCl6:Ce and 6Li-enriched Cs2 6LiYCl6:Ce crystals for high resolution gamma ray and neutron spectrometers. J. Cryst. Growth 312, 1216 (2010).
8. Lejay, J., Blahuta, S., Ouspenski, V., Menge, P., and Richaud, D.: Large CLYC:Ce and CLLB:Ce Crystals For Gamma-Neutron Detection Systems. Conference poster, http://voss-associates.com/downloads/Large%20CLYC%20and%20CLLB%20crystals%20St.%20Gobain.pdf.
9. Christensen, A.N.: Crystal growth of incongruently melting compounds. J. Cryst. Growth 62, 320 (1983).
10. Seifert, H.J. and Büchel, D.: Ternary chlorides in the systems ACl/YCl3 (A = Cs, Rb, K, Na). Z. Anorg. Allg. Chem. 624, 342 (1998).
11. Sun, Y., Bian, G., Tao, W., Zhai, C., Zhong, M., and Qiao, Z.: Thermodynamic optimization and calculation of the YCl3-ACl (A = Li, Na, K, Rb, Cs) phase diagrams. CALPHAD 39, 1 (2012).
12. Korreng, E.: The binary system lithium chloride–cesium chloride. Z. Anorg. Allg. Chem. 91, 194 (1915).
13. Zhao, M., Song, L., and Fan, X.: The Boundary Theory of Phase Diagrams and its Application (Science Press Beijing, Beijing, China, 2009).
14. Rhines, F.N.: Phase Diagrams in Metallurgy: Their Development and Application, 1st ed. (McGraw-Hill, New York, USA, 1956).
15. Mackenzie, R.C.: Differential Thermal Analysis, Vol. I, 1st ed. (Academic Press, New York, USA, 1970); pp. 577578.
16. Alper, A.: Phase Diagrams: Materials Science and Technology, Vol. II (Academic Press, New York, USA, 1970); p. 141.
17. Swanson, H.E. and Tatge, E.: Standard X-ray diffraction powder patterns. Natl. Bur. Stand. Circ. (U. S.) 539(1), 62 (1953).
18. Meyer, G., Soose, J., Moritz, A., Vitt, V., and Holljes, Th.: Ternary rare-earth halides of the type A2MX5 (A = K, In, NH4, Rb, Cs; X = Cl, Br, I). Z. Anorg. Allg. Chem. 521, 161 (1985).
19. Mattfeld, H. and Meyer, G.: Ternary halides of the A3MX6 type. I. A3YCl6 (A = K, NH4, Rb, Cs): Synthesis, structures, thermal behavior. Some analogous chlorides of the lanthanides. Z. Anorg. Allg. Chem. 618, 13 (1992).
20. Seifert, H.J.: Ternary chlorides of the trivalent late lanthanides: Phase diagrams, crystal structures and thermodynamic properties. J. Therm. Anal. Calorim. 83, 479 (2006).
21. Reber, C., Guedel, H.U., Meyer, G., Schleid, T., and Daul, C.A.: Optical, spectroscopic, and structural properties of vanadium(3+)-doped fluoride, chloride, and bromide elpasolite lattices. Inorg. Chem. 28, 3249 (1989).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 15
Total number of PDF views: 69 *
Loading metrics...

Abstract views

Total abstract views: 515 *
Loading metrics...

* Views captured on Cambridge Core between 22nd May 2017 - 21st April 2018. This data will be updated every 24 hours.