Skip to main content
×
×
Home

A unified physically based constitutive model for describing strain hardening effect and dynamic recovery behavior of a Ni-based superalloy

  • Y.C. Lin (a1), Dong-Xu Wen (a2), Yuan-Chun Huang (a3), Xiao-Min Chen (a4) and Xue-Wen Chen (a5)...
Abstract

The strain hardening effect and dynamic recovery behavior of a Ni-based superalloy are studied by isothermal compressive tests. A new unified dislocation-density based constitutive model is developed to characterize the strain hardening effect and dynamic recovery behavior of the studied superalloy. In the developed constitutive model, some material parameters (yield stress, strain hardening coefficient, and dynamic recovery coefficient) are assumed as functions of initial grain size, deformation temperature, and strain rate. An iterative algorithm is designed to predict the high-temperature deformation behaviors under time-variant hot working conditions. The hot deformation parameters and material parameters can be updated in each strain increment. Comparisons between the experimental and calculated flow stresses indicate that the developed constitutive model can accurately describe the high-temperature deformation behavior of the studied superalloy. Furthermore, the developed constitutive model is also successfully used for analyzing time-variant hot working processes.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: yclin@csu.edu.cn or linyongcheng@163.com
Footnotes
Hide All

Contributing Editor: Jürgen Eckert

Footnotes
References
Hide All
1. Lin, Y.C. and Chen, X.M.: A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater. Des. 32, 1733 (2011).
2. Chen, F., Cui, Z.S., and Chen, S.: Recrystallization of 30Cr2Ni4MoV ultra-super-critical rotor steel during hot deformation. Part I: Dynamic recrystallization. Mater. Sci. Eng., A 528, 5073 (2011).
3. Smirnov, A.S., Konovalov, A.V., Pushin, V.G., Uksusnikov, A.N., Zvonkov, A.A., and Zajcev, I.M.: Peculiarities of the rheological behavior for the Al-Mg-Sc-Zr alloy under high-temperature deformation. J. Mater. Eng. Perform. 23, 4271 (2014).
4. Momeni, A., Ebrahimi, G.R., and Faridi, H.R.: Effect of chemical composition and processing variables on the hot flow behavior of leaded brass alloys. Mater. Sci. Eng., A 626, 1 (2015).
5. Quan, G.Z., Mao, Y.P., Li, G.S., Lv, W.Q., Wang, Y., and Zhou, J.: A characterization for the dynamic recrystallization kinetics of as-extruded 7075 aluminum alloy based on true stress–strain curves. Comput. Mater. Sci. 55, 65 (2012).
6. Serajzadeh, S., Ranjbar Motlagh, S., Mirbagheri, S.M.H., and Akhgar, J.M.: Deformation behavior of AA2017-SiCp in warm and hot deformation regions. Mater. Des. 67, 318 (2015).
7. Lin, Y.C., Chen, M.S., and Zhong, J.: Constitutive modeling for elevated temperature flow behavior of 42CrMo steel. Comput. Mater. Sci. 42, 470 (2008).
8. Wang, W.T., Guo, X.Z., Huang, B., Tao, J., Li, H.G., and Pei, W.J.: The flow behaviors of CLAM steel at high temperature. Mater. Sci. Eng., A 599, 134 (2014).
9. Mirzaei, A., Zarei-Hanzaki, A., Haghdadi, N., and Marandi, A.: Constitutive description of high temperature flow behavior of Sanicro-28 super-austenitic stainless steel. Mater. Sci. Eng., A 589, 76 (2014).
10. Churyumov, A.Y., Khomutov, M.G., Solonin, A.N., Pozdniakov, A.V., Churyumova, T.A., and Minyaylo, B.F.: Hot deformation behaviour and fracture of 10CrMoWNb ferritic–martensitic steel. Mater. Des. 74, 44 (2015).
11. Chen, L., Zhao, G.Q., and Yu, J.Q.: Hot deformation behavior and constitutive modeling of homogenized 6026 aluminum alloy. Mater. Des. 75, 57 (2015).
12. Zhang, C.S., Ding, J., Dong, Y.Y., Zhao, G.Q., Gao, A.J., and Wang, L.J.: Identification of friction coefficients and strain-compensated Arrhenius-type constitutive model by a two-stage inverse analysis technique. Int. J. Mech. Sci. 98, 195 (2015).
13. Lin, Y.C., Xia, Y.C., Chen, X.M., and Chen, M.S.: Constitutive descriptions for hot compressed 2124-T851 aluminum alloy over a wide range of temperature and strain rate. Comput. Mater. Sci. 50, 227 (2010).
14. Tali, M.Z., Mazinani, M., Ferdowsi, M.R.G., Ebrahimi, G.R., and Marvi-Mashhadi, M.: Strain-dependent constitutive modelling of AZ80 magnesium alloy containing 0.5 wt% rare earth elements and evaluation of its validation using finite element method. Met. Mater. Int. 20, 1073 (2014).
15. Liao, C.H., Wu, H.Y., Wu, C.T., Zhu, F.J., and Lee, S.: Hot deformation behavior and flow stress modeling of annealed AZ61 Mg alloys. Prog. Nat. Sci.: Mater. Int. 24, 253 (2014).
16. Pilehva, F., Zarei-Hanzaki, A., Fatemi-Varzaneh, S.M., and Khalesian, A.R.: Hot deformation and dynamic recrystallization of Ti-6Al-7Nb biomedical alloy in single-phase β region. J. Mater. Eng. Perform. 24, 1799 (2015).
17. Shukla, A.K., Narayana Murty, S.V.S., Sharma, S.C., and Mondal, K.: Constitutive modeling of hot deformation behavior of vacuum hot pressed Cu–8Cr–4Nb alloy. Mater. Des. 75, 57 (2015).
18. Mirzadeh, H.: Quantification of the strengthening effect of reinforcements during hot deformation of aluminum-based composites. Mater. Des. 65, 80 (2015).
19. Mirzadeh, H.: Constitutive analysis of Mg-Al-Zn magnesium alloys during hot deformation. Mech. Mater. 77, 80 (2015).
20. Mirzadeh, H.: A Simplified approach for developing constitutive equations for modeling and prediction of hot deformation flow stress. Metall. Mater. Trans. A 46, 4027 (2015).
21. Salari, S., Naderi, M., and Bleck, W.: Constitutive modeling during simultaneous forming and quenching of a boron bearing steel at high temperatures. J. Mater. Eng. Perform. 24, 808 (2015).
22. Lin, Y.C., Chen, X.M., and Liu, G.: A modified Johnson–Cook model for tensile behaviors of typical high-strength alloy steel. Mater. Sci. Eng., A 527, 6980 (2010).
23. He, A., Xie, G.L., Zhang, H.L., and Wang, X.T.: A comparative study on Johnson-Cook, modified Johnson-Cook and Arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel. Mater. Des. 52, 677 (2013).
24. Akbari, Z., Mirzadeh, H., and Cabrera, J.M.: A simple constitutive model for predicting flow stress of medium carbon microalloyed steel during hot deformation. Mater. Des. 77, 126 (2015).
25. Cai, J., Wang, K.S., Zhai, P., Li, F.G., and Yang, J.: A modified Johnson-Cook constitutive equation to predict hot deformation behavior of Ti-6Al-4V alloy. J. Mater. Eng. Perform. 24, 32 (2015).
26. Lin, Y.C., Li, L.T., and Jiang, Y.Q.: A phenomenological constitutive model for describing thermo-viscoplastic behavior of Al-Zn-Mg-Cu alloy under hot working condition. Exp. Mech. 52, 993 (2012).
27. Tan, J.Q., Zhan, M., Liu, S., Huang, T., Guo, J., and Yang, H.: A modified Johnson-cook model for tensile flow behaviors of 7050-T7451 aluminum alloy at high strain rates. Mater. Sci. Eng., A 631, 214 (2015).
28. Kocks, U.F. and Mecking, H.: Physics and phenomenology of strain hardening: The FCC case. Prog. Mater. Sci. 48, 171 (2003).
29. Liang, H.Q., Nan, Y., Ning, Y.Q., Li, H., Zhang, J.L., Shi, Z.F., and Guo, H.Z.: Correlation between strain-rate sensitivity and dynamic softening behavior during hot processing. J. Alloys Compd. 632, 478 (2015).
30. Ning, Y.Q., Luo, X., Liang, H.Q., Guo, H.Z., Zhang, J.L., and Tan, K.: Competition between dynamic recovery and recrystallization during hot deformation for TC18 titanium alloy. Mater. Sci. Eng., A 635, 77 (2015).
31. Lin, Y.C., Chen, X.M., Wen, D.X., and Chen, M.S.: A physically-based constitutive model for a typical nickel-based superalloy. Comput. Mater. Sci. 83, 282 (2014).
32. Dong, D.Q., Chen, F., and Cui, Z.S.: A physically-based constitutive model for SA508-III steel: Modeling and experimental verification. Mater. Sci. Eng., A 634, 103 (2015).
33. Lin, Y.C., Chen, M.S., and Zhong, J.: Prediction of 42CrMo steel flow stress at high temperature and strain rate. Mech. Res. Commun. 35, 142 (2008).
34. Wang, L., Liu, F., Zuo, Q., and Chen, C.F.: Prediction of flow stress for N08028 alloy under hot working conditions. Mater. Des. 47, 737 (2014).
35. He, A., Xie, G.L., Yang, X.Y., Wang, X.T., and Zhang, H.L.: A physically-based constitutive model for a nitrogen alloyed ultralow carbon stainless steel. Comput. Mater. Sci. 98, 64 (2015).
36. Lin, Y.C., Li, K.K., Li, H.B., Chen, J., Chen, X.M., and Wen, D.X.: New constitutive model for high-temperature deformation behavior of inconel 718 superalloy. Mater. Des. 74, 108 (2015).
37. Lin, Y.C., Wen, D.X., Deng, J., Liu, G., and Chen, J.: Constitutive models for high-temperature flow behaviors of a Ni-based superalloy. Mater. Des. 59, 115 (2014).
38. Zuo, Q., Liu, F., Wang, L., Chen, C.F., and Zhang, Z.H.: Prediction of hot deformation behavior in Ni-based alloy considering the effect of initial microstructure. Prog. Nat. Sci.: Mater. Int. 25, 66 (2015).
39. Satheesh Kumar, S.S., Raghu, T., Bhattacharjee, P.P., Appa Rao, G., and Borah, U.: Constitutive modeling for predicting peak stress characteristics during hot deformation of hot isostatically processed nickel-base superalloy. J. Mater. Sci. 50, 6444 (2015).
40. Wen, D.X., Lin, Y.C., Li, H.B., Chen, X.M., Deng, J., and Li, L.T.: Hot deformation behavior and processing map of a typical Ni-based superalloy. Mater. Sci. Eng., A 591, 183 (2014).
41. Zhang, C., Zhang, L.W., Li, M.F., Shen, W.F., and Gu, S.D.: Effects of microstructure and γ′ distribution on the hot deformation behavior for a powder metallurgy superalloy FGH96. J. Mater. Res. 29, 2799 (2014).
42. Zhang, P., Hu, C., Ding, C.G., Zhu, Q., and Qin, H.Y.: Plastic deformation behavior and processing maps of a Ni-based superalloy. Mater. Des. 65, 575 (2015).
43. Liu, Y.H., Ning, Y.Q., Nan, Y., Liang, H.Q., Li, Y., and Zhao, Z.L.: Characterization of hot deformation behavior and processing map of FGH4096–GH4133B dual alloys. J. Alloys Compd. 633, 505 (2015).
44. Lin, Y.C., Wu, X.Y., Chen, X.M., Chen, J., Wen, D.X., Zhang, J.L., and Li, L.T.: EBSD study of a hot deformed nickel-based superalloy. J. Alloys Compd. 640, 101 (2015).
45. Liu, Y.X., Lin, Y.C., Li, H.B., Wen, D.X., Chen, X.M., and Chen, M.S.: Study of dynamic recrystallization in a Ni-based superalloy by experiments and cellular automaton model. Mater. Sci. Eng., A 626, 432 (2015).
46. Zhang, H.B., Zhang, K.F., Jiang, S.S., and Lu, Z.: The dynamic recrystallization evolution and kinetics of Ni–18.3Cr–6.4Co–5.9W–4Mo–2.19Al–1.16Ti superalloy during hot deformation. J. Mater. Res. 30, 1029 (2015).
47. Liang, H.Q., Guo, H.Z., Tan, K., Ning, Y.Q., Luo, X., Cao, G., Wang, J.J., and Zhen, P.L.: Correlation between grain size and flow stress during steady-state dynamic recrystallization. Mater. Sci. Eng., A 638, 357 (2015).
48. Ning, Y.Q., Xie, B.C., Li, H., and Fu, M.W.: Dynamic recrystallization of wrought–solidified–wrought complex structure in Ni-based superalloys. Adv. Eng. Mater. 17, 648 (2015).
49. Chen, X.M., Lin, Y.C., Chen, M.S., Li, H.B., Wen, D.X., Zhang, J.L., and He, M.: Microstructural evolution of a nickel-based superalloy during hot deformation. Mater. Des. 77, 41 (2015).
50. Lin, Y.C., Deng, J., Jiang, Y.Q., Wen, D.X., and Liu, G.: Hot tensile deformation behaviors and fracture characteristics of a typical Ni-based superalloy. Mater. Des. 55, 949 (2014).
51. Huang, L.J., Qi, F., Yu, L.X., Xin, X., Liu, F., Sun, W.R., and Hu, Z.Q.: Necking behavior and microstructural evolution during high strain rate superplastic deformation of IN718 superalloy. Mater. Sci. Eng., A 634, 71 (2015).
52. Lin, Y.C., Deng, J., Jiang, Y.Q., Wen, D.X., and Liu, G.: Effects of initial δ phase on hot tensile deformation behaviors and fracture characteristics of a typical Ni-based superalloy. Mater. Sci. Eng., A 598, 251 (2014).
53. Wen, D.X., Lin, Y.C., Chen, J., Chen, X.M., Zhang, J.L., Liang, Y.J., and Li, L.T.: Work-hardening behaviors of typical solution-treated and aged Ni-based superalloys during hot deformation. J. Alloys Compd. 617, 372 (2015).
54. Wen, D.X., Lin, Y.C., Chen, J., Deng, J., Chen, X.M., Zhang, J.L., and He, M.: Effects of initial aging time on processing map and microstructures of a nickel-based superalloy. Mater. Sci. Eng., A 620, 319 (2015).
55. He, D.G., Lin, Y.C., Chen, M.S., Chen, J., Wen, D.X., and Chen, X.M.: Effect of pre-treatment on hot deformation behavior and processing map of an aged nickel-based superalloy. J. Alloys Compd. 649, 1075 (2015).
56. Lin, Y.C., He, M., Zhou, M., Wen, D.X., and Chen, J.: New constitutive model for hot deformation behaviors of Ni-based superalloy considering the effects of initial δ phase. J. Mater. Eng. Perform. 24, 3527 (2015).
57. Momeni, A., Kazemi, S., Ebrahimi, G., and Maldar, A.: Dynamic recrystallization and precipitation in high manganese austenitic stainless steel during hot compression. Int. J. Miner., Metall. Mater. 21, 36 (2014).
58. Mirzadeh, H. and Najafizadeh, A.: Hot deformation and dynamic recrystallization of 17-4 PH stainless steel. ISIJ Int. 53, 680 (2013).
59. Zhang, H.B., Zhang, K.F., Zhou, H.P., Lu, Z., Zhao, C.H., and Yang, X.L.: Effect of strain rate on microstructure evolution of a nickel-based superalloy during hot deformation. Mater. Des. 80, 51 (2015).
60. Quan, G.Z., Wang, Y., Liu, Y.Y., and Zhou, J.: Effect of temperatures and strain rates on the average size of grains refined by dynamic recrystallization for as-extruded 42CrMo steel. Mater. Res. 16, 1092 (2013).
61. Chen, M.S., Lin, Y.C., and Ma, X.S.: The kinetics of dynamic recrystallization of 42CrMo steel. Mater. Sci. Eng., A 556, 260 (2012).
62. Mecking, H., Kocks, U.F., and Hartig, C.: Taylor factors in materials with many deformation modes. Scr. Mater. 35, 465 (1996).
63. Lindgren, L., Domkin, K., and Hansson, S.: Dislocations, vacancies and solute diffusion in physical based plasticity model for AISI 316L. Mech. Mater. 40, 907 (2008).
64. Fukuhara, M. and Sanpei, A.: Elastic moduli and internal frictions of Inconel 718 and Ti-6Al-4V as a function of temperature. J. Mater. Sci. Lett. 12, 1122 (1993).
65. Fisk, M., Ion, J.C., and Lindgren, L.E.: Flow stress model for IN718 accounting for evolution of strengthening precipitates during thermal treatment. Comput. Mater. Sci. 82, 531 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 15
Total number of PDF views: 118 *
Loading metrics...

Abstract views

Total abstract views: 520 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 16th August 2018. This data will be updated every 24 hours.