Skip to main content
×
×
Home

Uranyl peroxide nanoclusters at high-pressure

  • Katlyn M. Turner (a1), Jennifer E.S. Szymanowski (a2), Fuxiang Zhang (a3), Yu Lin (a4), Brendan T. McGrail (a2), Wendy L. Mao (a5), Peter C. Burns (a6) and Rodney C. Ewing (a1)...
  • Please note a correction has been issued for this article.
Abstract

U60 ([UO2(O2)(OH)]60 60− in water) is a uranyl peroxide nanocluster with a fullerene topology and O h symmetry. U60 clusters can exist in crystalline solids or in liquids; however, little is known of their behavior at high pressures. We compressed the U60-bearing material: Li68K12(OH)20[UO2(O2)(OH)]60(H2O)310 ( $Fm\bar 3$ ; a = 37.884 Å) in a diamond anvil cell to determine its response to increasing pressure. Three length scales and corresponding structural features contribute to the compression response: uranyl peroxide bonds (<0.5 nm), isolated single nanoclusters (2.5 nm), and the long-range periodicity of nanoclusters within the solid (>3.7 nm). Li68K12(OH)20[UO2(O2)(OH)]60(H2O)310 transformed to a tetragonal structure below 2 GPa and irreversibly amorphized between 9.6 and 13 GPa. The bulk modulus of the tetragonal U60-bearing material was 25 ± 2 GPa. The pressure-induced amorphous phase contained intact U60 clusters, which were preserved beyond the loss of long-range periodicity. The persistence of U60 clusters at high pressure may have been enhanced by the interaction between U60 nanoclusters and the alcohol pressure medium. Once formed, U60 nanoclusters persist regardless of their associated long-range ordering—in crystals, amorphous solids, or solutions.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: katlynmt@stanford.edu
Footnotes
Hide All

Contributing Editor: William J. Weber

Footnotes
References
Hide All
1. Sigmon, G., Ling, J., Unruh, D., Moore-Shay, L., Ward, M., Weaver, B., and Burns, P.: Uranyl–peroxide interactions favor nanocluster self-assembly. J. Am. Chem. Soc. 131, 16648 (2009).
2. Miró, P., Pierrefixe, S., Gicquel, M., Gil, A., and Bo, C.: On the origin of the cation templated self-assembly of uranyl-peroxide nanoclusters. J. Am. Chem. Soc. 132, 17787 (2010).
3. Vlaisavljevich, B., Gagliardi, L., and Burns, P.: Understanding the structure and formation of uranyl peroxide nanoclusters by quantum chemical calculations. J. Am. Chem. Soc. 132, 14503 (2010).
4. Burns, P. and Hughes, K.: Studtite, [(UO2)(O2)(H2O)2](H2O)2: The first structure of a peroxide mineral. Am. Mineral. 88, 1165 (2003).
5. Burns, P., Kubatko, K., Sigmon, G., Fryer, B., Gagnon, J., Antonio, M., and Soderholm, L.: Actinyl peroxide nanospheres. Angew. Chem., Int. Ed. 44, 2135 (2005).
6. Unruh, D., Burtner, A., Pressprich, L., Sigmon, G., and Burns, P.: Uranyl peroxide closed clusters containing topological squares. J. Chem. Soc., Dalton Trans. 39, 5807 (2010).
7. Forbes, T., McAlpin, J., Murphy, R., and Burns, P.: Metal–oxygen isopolyhedra assembled into fullerene topologies. Angew. Chem., Int. Ed. 47, 2824 (2008).
8. Sigmon, G., Unruh, D., Ling, J., Weaver, B., Ward, M., Presspich, L., Simonetti, A., and Burns, P.: Symmetry versus minimal pentagonal adjacencies in uranium-based polyoxometalate fullerene topologies. Angew. Chem., Int. Ed. 48, 2737 (2009).
9. Unruh, D., Ling, J., Qiu, J., Pressprich, L., Baranay, M., Ward, M., and Burns, P.: Complex nanoscale cage clusters built from uranyl polyhedra and phosphate tetrahedra. Inorg. Chem. 50, 5509 (2011).
10. Ling, J., Qiu, J., Szymanowski, J., and Burns, P.: Low-symmetry uranyl pyrophosphate cage clusters. Chem.–Eur. J. 17, 2571 (2011).
11. Ling, J., Wallace, C., Szymanowski, J., and Burns, P.: Hybrid uranium–oxalate fullerene topology cage clusters. Angew. Chem., Int. Ed. 49, 7271 (2010).
12. Ling, J., Ozga, M., Stoffer, M., and Burns, P.: Uranyl peroxide pyrophosphate cage clusters with oxalate and nitrate bridges. J. Chem. Soc., Dalton Trans. 41, 7278 (2012).
13. Qiu, J., Ling, J., Jouffret, L., Thomas, R., Szymanowski, J., and Burns, P.: Water-soluble multi-cage super tetrahedral uranyl peroxide phosphate clusters. Chem. Sci. 5, 303 (2014).
14. Qiu, J., Ling, J., Sui, A., Szymanowski, J., Simonetti, A., and Burns, P.: Time-resolved self-assembly of a fullerene-topology core–shell cluster containing 68 uranyl polyhedra. J. Am. Chem. Soc. 134, 1810 (2012).
15. Ling, J., Qiu, J., Sigmon, G., Ward, M., Szymanowski, J., and Burns, P.: Uranium pyrophosphate/methylenediphosphonate polyoxometalate cage clusters. J. Am. Chem. Soc. 132, 13395 (2010).
16. Qiu, J., Nguyen, K., Jouffret, L., Szymanowski, J., and Burns, P.: Time-resolved assembly of chiral uranyl peroxo cage clusters containing belts of polyhedra. Inorg. Chem. 52, 337 (2013).
17. Ling, J., Qiu, J., and Burns, P.: Uranyl peroxide oxalate cage and core–shell clusters containing 50 and 120 uranyl ions. Inorg. Chem. 51, 2403 (2012).
18. Burns, P.: Nanoscale uranium-based cage clusters inspired by uranium mineralogy. Mineral. Mag. 75, 1 (2011).
19. Qiu, J. and Burns, P.: Clusters of actinides with oxide, peroxide or hydroxide bridges. Chem. Rev. 113, 1097 (2012).
20. Burns, P., Ewing, R., and Hawthorne, F.: The crystal chemistry of hexavalent uranium: Polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. Can. Mineral. 35, 1551 (1997).
21. Burns, P.: U6+ minerals and inorganic compounds: Insights into an expanded structural hierarchy of crystal structures. Can. Mineral. 43, 1839 (2005).
22. Burns, P., Ewing, R., and Navrotsky, A.: Nuclear fuel in a reactor accident. Science 335, 1184 (2012).
23. Armstrong, C., Nyman, M., Shvareva, T., Sigmon, G., Burns, P., and Navrotsky, A.: Uranyl peroxide enhanced nuclear fuel corrosion in seawater. Proc. Natl. Acad. Sci. 109, 1874 (2012).
24. Flynn, S., Szymanowski, J., Gao, Y., Liu, T., Burns, P., and Fein, J.: Experimental measurements of U60 nanocluster stability in aqueous solution. Geochim. Cosmochim. Acta 156, 94 (2015).
25. Wallace, C.: Solution and aggregation behavior of the U60 nanocluster and post-detonation nuclear forensic analysis of trinitite. Ph.D. thesis, University of Notre Dame, Notre Dame, Indiana, 2013.
26. Wylie, E., Peruski, K., Weidman, J., Phillip, W., and Burns, P.: Ultrafiltration of uranyl peroxide nanoclusters for the separation of uranium from aqueous solution. ACS Appl. Mater. Interfaces. 6, 473 (2013).
27. Wylie, E., Peruski, K., Prizio, S., Bridges, A., Rudisill, T., Hobbs, D., Phillip, W., and Burns, P.: Processing used nuclear fuel with nanoscale control of uranium and ultrafiltration. J. Nucl. Mater. 473, 125 (2016).
28. Peruski, K., Bernales, V., Dembowski, M., Lobeck, H., Pellegrini, K., Sigmon, G., Hickam, S., Wallace, C., Szymanowski, J., Balboni, E., Gagliardi, L., and Burns, P.: Uranyl peroxide cage cluster solubility in water and the role of the electrical double layer. Inorg. Chem. 56, 1333 (2017).
29. Patterson, J., Catledge, S., Vohra, Y., Akella, J., and Weir, S.: Electrical and mechanical properties of C70 fullerene and graphite under high pressures studied using designer diamond anvils. Phys. Rev. Lett. 85, 5634 (2000).
30. Kumar, R., Pravica, M., Cornelius, A., Nicol, M., Hu, M., and Chow, P.: X-ray Raman scattering studies on C60 fullerenes and multi-walled carbon nanotubes under pressure. Diamond Relat. Mater. 16, 1250 (2007).
31. Venkateswaran, U., Rao, A., Richter, E., Menon, M., Rinzler, A., Smalley, R., and Eklund, P.: Probing the single-wall carbon nanotube bundle: Raman scattering under high pressure. Phys. Rev. B: Condens. Matter Mater. Phys. 59, 10928 (1999).
32. Miller, E., Nesting, D., and Badding, J.: Quenchable transparent phase of carbon. Chem. Mater. 9, 18 (1997).
33. Sood, A., Teresdesai, P., Muthu, D., Sen, R., Govindaraj, A., and Rao, C.: Pressure behaviour of single wall carbon nanotube bundles and fullerenes: A Raman study. Phys. Status Solidi B 215, 393 (1999).
34. Patterson, J., Vohra, Y., Weir, S., and Akella, J.: Single-wall carbon nanotubes under high pressures to 62 GPa studied using designer diamond anvils. J. Nanosci. Nanotechnol. 1, 143 (2001).
35. Patterson, J., Catledge, S., Vohra, Y., Akella, J., and Weir, S.: Electrical and mechanical properties of C70 fullerene and graphite under high pressures studied using designer diamond anvils. Phys. Rev. Lett. 85, 5364 (2000).
36. Lin, Y., Zhang, L., Mao, H., Chow, P., Xiao, Y., Baldini, M., Shu, J., and Mao, W.: Amorphous diamond: A high-pressure superhard carbon allotrope. Phys. Rev. Lett. 107, 175504 (2011).
37. Wang, L., Liu, B., Li, H., Yang, W., Ding, Y., Sinogeikin, S., Meng, Y., Liu, Z., Zeng, X., and Mao, W.: Long-range ordered carbon clusters: A crystalline material with amorphous building blocks. Science 337, 825 (2012).
38. Wang, D. and Fernandez-Martinez, A.: Order from disorder. Science 337, 812 (2012).
39. Elliott, S.: Medium-range structural order in covalent amorphous solids. Nature 354, 445 (1991).
40. Lucovsky, G.: Specification of medium range order in amorphous materials. J. Non-Cryst. Solids 97, 155 (1987).
41. Červinka, L.: Medium-range ordering in non-crystalline solids. J. Non-Cryst. Solids 90, 371 (1987).
42. Mao, H., Bell, P., Shaner, J., and Steinberg, S.: Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R 1 fluorescence pressure gauge from 0.06 to 1 Mbar. J. Appl. Phys. 49, 3276 (1978).
43. Angel, R., Bujak, M., Zhao, J., Gatta, G., and Jacobsen, S.: Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J. Appl. Crystallogr. 40, 26 (2007).
44. Bassett, W.: Diamond anvil cell, 50th birthday. High Pressure Res. 29, 163 (2009).
45. Jaffe, A., Lin, Y., Mao, W., and Karunadasa, H.: Pressure-induced conductivity and yellow-to-black piezochromism in a layered Cu–Cl hybrid perovskite. J. Am. Chem. Soc. 137, 1673 (2015).
46. Jiang, S., Fang, Y., Li, R., Xiao, H., Crowley, J., Wang, C., White, T., Goddard, W., Wang, Z., Baikie, T., and Fang, J.: Pressure-dependent polymorphism and band-gap tuning of methylammonium lead iodide perovskite. Angew. Chem., Int. Ed. 55, 6540 (2016).
47. Umeyama, D., Lin, Y., and Karunadasa, H.: Red-to-black piezochromism in a compressible Pb–I–SCN layered perovskite. Chem. Mater. 28, 3241 (2016).
48. Jaffe, A., Lin, Y., Beavers, C., Voss, J., Mao, W., and Karunadasa, H.: High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties. ACS Cent. Sci. 2, 201 (2016).
49. Spencer, E., Kiran, M., Li, W., Ramamurty, U., Ross, N., and Cheetham, A.: Pressure-induced bond rearrangement and reversible phase transformation in a metal–organic framework. Angew. Chem., Int. Ed. 53, 5583 (2014).
50. Spencer, E., Zhao, J., Ross, N., Andrews, M., Surbella, R., and Cahill, C.: The influence of pressure on the photoluminescence properties of a terbium-adipate framework. J. Solid State Chem. 202, 99 (2013).
51. Spencer, E., Ross, N., Surbella, R., and Cahill, C.: The influence of pressure on the structure of a 2D uranium(VI) carboxyphosphonoate compound. J. Solid State Chem. 218, 1 (2014).
52. Heffernan, K., Ross, N., Spencer, E., and Boatner, L.: The structural response of gadolinium phosphate to pressure. J. Solid State Chem. 241, 180 (2016).
53. Spencer, E., Ross, N., and Angel, R.: The high pressure behaviour of the 3D copper carbonate framework {[Cu(CO3)2](CH6N3)2} n . J. Mater. Chem. 22, 2074 (2012).
54. Spencer, E., Soghomonian, V., and Ross, N.: Gallium arsenate dihydrate under pressure: Elastic properties, compression mechanism, and hydrogen bonding. Inorg. Chem. 54, 7548 (2015).
55. Wojdyr, M.: Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 43(5), 1126 (2010).
56. Rodriguez-Carvajal, J.: FullProf Suite (LLB Sacley and LCSIM Rennes, France, 2003).
57. Birch, F.: Finite elastic strain of cubic crystals. Phys. Rev. 71, 809 (1947).
58. Angel, R., Alvaro, M., and Gonzalez-Platas, J.: EosFit7c and a Fortran module (library) for equation of state calculations. Z. Kristallogr.–Cryst. Mater. 229, 405 (2014).
59. McGrail, B., Sigmon, G., Jouffret, L., Andrews, C., and Burns, P.: Raman spectroscopic and ESI-MS characterization of uranyl peroxide cage clusters. Inorg. Chem. 53, 1562 (2014).
60. Haddon, R., Brus, L., and Raghavachari, K.: Electronic structure and bonding in icosahedral C60 . Chem. Phys. Lett. 125, 459 (1986).
61. Martin, J., Goettler, S., Fossé, N., and Iton, L.: Designing intermediate-range order in amorphous materials. Nature 419, 381 (2002).
62. Roy, X., Lee, C., Crowther, A., Schenck, C., Besara, T., Lalancette, R., Siegrist, T., Stephens, P., Brus, L., Kim, P., and Steigerwald, M.: Nanoscale atoms in solid-state chemistry. Science 341, 157 (2013).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Turner supplementary material
Figures S1-S2

 Word (951 KB)
951 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed