Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-09T18:32:06.547Z Has data issue: false hasContentIssue false

Water-based Si3N4 suspensions: Part I. Effect of processing routes on the surface chemistry and particle interactions

Published online by Cambridge University Press:  31 January 2011

C. Galassi
Affiliation:
IRTEC-CNR, Via Granarolo 64, I-48018 Faenza, Italy
F. Bertoni
Affiliation:
IRTEC-CNR, Via Granarolo 64, I-48018 Faenza, Italy
S. Ardizzone
Affiliation:
Department of Physical Chemistry and Electrochemistry, University of Milan, Via Golgi 19, I-20133 Milan, Italy
C. L. Bianchi
Affiliation:
Department of Physical Chemistry and Electrochemistry, University of Milan, Via Golgi 19, I-20133 Milan, Italy
Get access

Extract

Si3N4 powders manufactured by two different preparative routes were characterized for the solid–liquid interfacial reactivity and surface composition. Three mixing processes were tried to investigate the modifications of silicon nitride particle surface in aqueous suspensions. The surfaces of the starting powders and the dried mixed powders were investigated by x-ray photoelectron spectroscopy to determine the nature and ratios of surface groups. Electroacoustic measurements show that no change occurs in the isoelectric point for the mixed Si3N4 powders while the milling/mixing process has a great influence on the zeta potential magnitude and particle size distribution.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Pujari, V.K. and Aboual, M., Key Eng. Mater. 132–136, 341 (1997).CrossRefGoogle Scholar
2.Dressler, W. and Riedel, R., Int. J. Refract. Met. Hard Mater. 15, 13 (1997).CrossRefGoogle Scholar
3.Ziegler, G., Heinrich, J., and Wotting, G., J. Mater. Sci. 22, 3041 (1987).CrossRefGoogle Scholar
4.Carlström, E., in Surface and colloidal chemistry in advanced ceramics processing, Surfactant Science Series Vol. 51, edited by Pugh, R.J. and Bergström, L. (Deckker, New York, 1994).Google Scholar
5.Lange, F.F., J. Am. Ceram. Soc. 72, 3 (1989).CrossRefGoogle Scholar
6.Morrell, R., in Materials Science and Technology, Processing of Ceramics Part I, edited by Cahn, R.W., Haasen, P., and Kramer, E.J. (VCH, Weinheim, Germany, 1996).Google Scholar
7.Galassi, C., Biasini, V., and Bellosi, A., Proc. Adv. Mater. 3, 153 (1993).Google Scholar
8.Bergström, L., Ernstsson, M., Gruvin, B., Brage, R., Nyberg, B., and Carlström, E., in Ceramics Today—Tomorrow's Ceramics, edited by Vincenzini, P. (Elsevier Science Publishers, B.V., 1991).Google Scholar
9.Bellosi, A., Monteverde, F., and Babini, G.N., in Engineering Ceramics '96: Higher Reliability through Processing (Kluwer Academic Publishers, 1996), Vol. 25, p. 197.Google Scholar
10.Ardizzone, S., Bianchi, C., Carella, S., and Cattania, M.G., Mater. Chem. Phys. 34, 154 (1993).CrossRefGoogle Scholar
11.Hackley, V.A., Premachandran, R.S., and Malagan, S.G., in Characterization Techniques for Solid-Solution Interface, edited by Adair, J.H., Casey, J.A., and Venigalla, S. (American Ceramic Society, 1993), p. 141.Google Scholar
12.Desai, F.N., Hammad, H.R., and Hayes, K.F., NIST Spec. Publ. 856, 129 (1993).Google Scholar
13.Kulig, M. and Greil, P., J. Mater. Sci. 26, 216 (1991).CrossRefGoogle Scholar
14.Malghan, S.G., Hackley, V.A., and Wang, P.S., in Ceramic Engineering and Scientific Processing (American Ceramic Society, Westerville, OH, 1994).Google Scholar
15.Peucjert, M. and Greil, P., J. Mater. Sci. 22, 3717 (1987).CrossRefGoogle Scholar
16.Rahaman, M.N., Boiteux, Y., and De Jonghe, L.C., Am. Ceram. Soc. Bull. 65, 1171 (1986).Google Scholar
17.Raider, S.I., Flitsch, R., Aboaf, J.A., and Pliskin, W.A., J. Electrochem. Soc. 123, 560 (1976).CrossRefGoogle Scholar
18.Brow, R.K. and Pantano, C.G., J. Am. Ceram. Soc. 69, 314 (1986).CrossRefGoogle Scholar
19.Brow, R.K. and Pantano, C.G., J. Am. Ceram. Soc. 70, 9 (1987).CrossRefGoogle Scholar
20.Galassi, C., Rastelli, E., Roncari, E., Ardizzone, S., and Cattania, M.G., J. Mater. Res. 10, 339 (1995).CrossRefGoogle Scholar
21.Castanho, S.M., Fierro, J.L.G, and Moreno, R., J. Eur. Ceram. Soc. 17, 383 (1997).CrossRefGoogle Scholar
22.Castanho, S.M., Moreno, R., and Fierro, J.L.G, J. Mat. Sci. 32, 157 (1997).CrossRefGoogle Scholar
23.Moulder, J.F., Stickle, W.F., and Bompen, K.D., Handbook of X-ray Photoelectron Spectroscopy (Perkin Elmer, Eden Praire, MN, 1991).Google Scholar
24.Ardizzone, S., Bianchi, C., and Tirelli, D., J. Electroanal. Chem. 425, 19 (1997).CrossRefGoogle Scholar
25.Bergström, L. and Pugh, R.J., J. Am. Ceram. Soc. 72, 103 (1989).CrossRefGoogle Scholar
26.Greil, P., Nitzsche, R., Friedrich, H., and Hermel, W., J. Eur. Ceram. Soc. 7, 353 (1991).CrossRefGoogle Scholar
27.Cannon, D.W., Oja, T., and Peterson, G.L., U.S. Patent No. 4 497 208 (1985).Google Scholar
28.Hackley, V.A. and Malghan, S.G., in Advanced Synthesis and Processing of Composites and Advanced Ceramics, Ceramic Transactions, edited by Spriggs, R.M., Logan, K.V., and Munir, Z.A. (American Ceramic Society, Westerville, OH, 1995), p. 283.Google Scholar
29.O'Brien, R.W., Rowlands, W.N., and Hunter, R.J., Ceram. Trans. 54, 53 (1995).Google Scholar
30.Hackley, V.A., Ceramic Industry June, 52 (1997).Google Scholar
31.O'Brien, R.W., Cannon, D.W., and Rowlands, W.N., J. Colloid. Interface Sci. 173, 406 (1995).CrossRefGoogle Scholar
32.Greil, P., Mater. Sci. Eng. A109, 27 (1989).CrossRefGoogle Scholar
33.Malghan, S.G., Coll. Surf. 62, 87 (1992).CrossRefGoogle Scholar
34.Bergström, L. and Bostedt, E., Coll. Surf. 49, 183 (1990).CrossRefGoogle Scholar
35.Whitman, P.K. and Feke, D.L., J. Am. Ceram. Soc. 71, 1086 (1988).CrossRefGoogle Scholar
36.Hackley, V.A., Wang, Pu Sen, and Malghan, S.G., Mater. Chem. Phys. 36, 112 (1993).CrossRefGoogle Scholar
37.Israelachvili, J., in Intermolecular and Surface Forces, 2nd ed. (Academic Press, London, 1991).Google Scholar
38.Hackley, V.A., Premachandran, R.S., and Malghan, S.G., Handbook on Characterization Techniques for the Solid-Solution Interface, edited by Adair, J.H., Casey, J.A., Venigalla, Sridhar (American Ceramic Society, Westerville, OH, 1993), p. 141.Google Scholar
39.Stephen, R.G. and Riley, F.L., J. Eur. Ceram. Soc. 5, 219 (1989).CrossRefGoogle Scholar
40.Becker, J.E., Am. Ceram. Soc. Bull. 75, 72 (1996).Google Scholar
41.Houviet, D., Haussonne, J.M., Vallar, S., and Hemidy, J.F., L'industrie Céramique et Verrière 196, 423 (1996) (in French).Google Scholar
42.Enomoto, N., Maruyama, S., and Nakagawa, Z., J. Mater. Res. 12, 1410 (1997).CrossRefGoogle Scholar
43.Enomoto, N., Maruyama, S., and Nakagawa, Z., J. Ceram. Soc. Jpn. 102, 1105 (1994).CrossRefGoogle Scholar
44.Dukhin, A.S. and Goetz, P.J., Langmuir 12, 4336 (1996).CrossRefGoogle Scholar