Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-15T05:21:26.194Z Has data issue: false hasContentIssue false

Well-defined colloidal tin(IV) oxide particles

Published online by Cambridge University Press:  31 January 2011

Manuel Ocaña
Affiliation:
Department of Chemistry, Clarkson University, Potsdam, New York 13699
Egon Matijević
Affiliation:
Department of Chemistry, Clarkson University, Potsdam, New York 13699
Get access

Abstract

Spherical and rod-like SnO2 particles of narrow size distribution have been obtained by aging at 100°C acidified tin(IV) chloride solutions in the presence of urea or formamide. It was shown that spherical particles, the x-ray diffraction of which was characteristic of cassiterite, consisted of a large number of much smaller subunits. The rod-like particles had the same structure, but of higher degree of crystallinity. Infrared spectra of these powders were evaluated in terms of the theory of the average dielectric constant (TADC), in order to gain additional information on the particle morphology and the state of aggregation.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Nakahara, T., Takahata, K., and Matsuura, S., Proc. Electrochem. Soc. 87 (1987).Google Scholar
2Torvela, H. and Lappavuori, S., Int. J. High Technol. Ceram. 3, 309 (1987).CrossRefGoogle Scholar
3Harrison, P. G. and Willet, M. J., Nature 332, 337 (1988).CrossRefGoogle Scholar
4Klasens, H.A. and Koelemans, H., Solid State Electron. 7, 701 (1964).CrossRefGoogle Scholar
5Aoki, A. and Sasakura, H., Jpn. J. Appl. Phys. 9, 582 (1970).CrossRefGoogle Scholar
6Crouch, A. M. and Langford, C. H., J. Electroanal. Chem. Interfacial Electrochem. 221, 83 (1987).Google Scholar
7Kawiak, J., Kulesza, P. J., and Galus, Z., J. Electroanal. Chem. Interfacial Electrochem. 226, 305 (1987).CrossRefGoogle Scholar
8Rowlette, J. J. and Attia, A. I., Proc. Electrochem. Soc. 7 (1987).Google Scholar
9Doval, H. J.F., Scelza, O.A., and Castro, A. A., React. Kinet. Catal. Lett. 34, 143 (1987).CrossRefGoogle Scholar
10Stampfl, S.R., Chen, Y., Dumesis, J.A., Niu, Ch., and Hill, C.G., Catal, J.. React. Kinet. Catal. Lett. 105, 445 (1987).Google Scholar
11Cebolla, V. L., Bacaud, R., Besson, M., Cagniant, D., Charcosset, H., and Obeson, M., Bull. Soc. Chim. France 6, 935 (1987).Google Scholar
12Nagatomo, T. and Omoto, O., Jpn. J. Appl. Phys. Part 2 26, L914 (1987).Google Scholar
13Agashe, C., Takwale, M. G., Marathe, B. R., and Bhide, V. G., Sol. Energy Mater. 17, 99 (1988).Google Scholar
14Matijević, E.;, Annu. Rev. Mater. Sci. 15, 483 (1985).CrossRefGoogle Scholar
15Matijević, E., Langmuir 2, 12 (1986).CrossRefGoogle Scholar
16Matijević, E., J. Mater. Educ. 10, 177 (1988).Google Scholar
17Serna, C. J., Ocaña, M., and Iglesias, J.E., J. Phys. Chem. 20, 473 (1987).Google Scholar
18Ocaña, M., Fornés, V., Garcia-Ramos, J.V., and Serna, C. J., J. Solid State Chem. 75, 364 (1988).CrossRefGoogle Scholar
19Hayashi, S., Nakamori, N., and Kanamori, H., J. Phys. Soc. Jpn. 46, 176 (1979).CrossRefGoogle Scholar
20Ocaña, M., Fornés, V., Garcia-Ramos, J.V., and Serna, C. J., Phys. Chem. Miner., 14 527 (1987).Google Scholar
21Ocaña, M., Fornés, V., and Serna, C. J., J. Non-Crystal. Solids 107, 187 (1989).CrossRefGoogle Scholar
22Summitt, R., J. Appl. Phys. 39, 3762 (1968).Google Scholar
23Hsu, W. P., Rönnquist, L., and Matijević, E., Langmuir 4, 31 (1988).CrossRefGoogle Scholar
24Johansen, P. J. and Buchanan, A. S., Aust. J. Chem. 10, 392 (1957).CrossRefGoogle Scholar
25Matijević, E. and Cimaš, S., Colloid Polymer Sci. 265, 155 (1987).CrossRefGoogle Scholar