Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-01T03:56:31.727Z Has data issue: false hasContentIssue false

ZnO microtubes

Published online by Cambridge University Press:  03 March 2011

G.R. Fox
Affiliation:
Laboratoire de Céramique, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
P.A. Danai
Affiliation:
Laboratoire de Céramique, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
Get access

Abstract

Microtubes of ZnO have been produced using sputter coating and a fugitive phase technique. ZnO was sputtered onto polyester fibers by dc magnetron sputtering, and the polyester fiber fugitive phase was subsequently burned out by annealing in air or oxygen. Tubes with an inside diameter of 23 μm and a length of 3 cm were obtained. The 3 to 6 μm thick walls of the tubes exhibited a [002] radial texture.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Brown, K. T. and Flaming, D. G., Advanced Micropipette Techniques for Cell Physiology (John Wiley and Sons, Chichester, England, 1986).Google Scholar
2Scott, J., Hollow Fibers (Noyes Data Corporation, Park Ridge, NJ, 1981).Google Scholar
3Labelle, H., J. Cryst. Growth 50, 8 (1980).Google Scholar
4Brake, P., Schurmans, H., and Verhoest, J., Inorganic Fibres and Composite Materials (Pergamon Press, Oxford, England), pp. 3547.Google Scholar
5Aizawa, M., Nakagawa, Y., Nosaka, Y., Fujii, N., and Miyama, H., J. Non-Cryst. Solids 124, 112 (1990).CrossRefGoogle Scholar
6White, R. A., Weber, J. N., and White, E. W., Science 176, 922 (1972).CrossRefGoogle Scholar
7Rittenmyer, K., Shrout, T., Schulze, W. A., and Newnham, R. E., Ferroelectrics 41, 189 (1982).CrossRefGoogle Scholar
8Miyagi, M., Hongo, A., Aizawa, Y., and Kawakami, S., Appl. Phys. Lett. 43, 430 (1983).CrossRefGoogle Scholar
9Matsuura, Y. and Miyagi, M., J. Appl. Phys. 68 (11), 5463 (1990).CrossRefGoogle Scholar
10Matsuura, Y. and Miyagi, M., J. Appl. Phys. Lett. 61 (14), 1622 (1992).CrossRefGoogle Scholar
11Polyesther Fiber, TYP 158, Rhône-Poulenc Viscosuisse SA, Emmenbriicke, Switzerland.Google Scholar
12Cement Universal, Merz and Benteli SA, Niederwangen, Switzerland.Google Scholar
13Diffstak, model 150, Edwards High Vacuum International, West Sussex, England.Google Scholar
14Mass flow controller, type 825; Multichannel flow controller, model 1605, Edwards High Vacuum International, West Sussex, England.Google Scholar
15High accuracy pressure transducer, type 120; Power supply/readout, type 510, MKS Instruments, Andover, MA.Google Scholar
16STM 100/MF thickness/rate monitor, Sycon Instruments, East Syracuse, NY.Google Scholar
17100 mm magnetron source, Edwards High Vacuum International, West Sussex, England.Google Scholar
18Zn metal, 99.99% pure, CERAC Incorporated, Milwaukee, WI.Google Scholar
19MDX IK Magnetron Drive, Advance Energy Industries, Inc., Fort Collins, CO.Google Scholar
20Debye-Sherrer x-ray camera, Huber, Rimsting, Germany.Google Scholar
21Stereoscan 360 scanning electron microscope, Cambridge Scientific Instruments Ltd., Cambridge, U.K.Google Scholar