Skip to main content Accessibility help

Continuum Damage Approach for Fatigue Life Prediction of Viscoplastic Solder Joints

  • L. Benabou (a1), Z. Sun (a2), P. Pougnet (a3) and P. R. Dahoo (a4)


The accurate and effective prediction of the failure for an inelastic structure, such as a solder joint in an electronic chip packaging, remains a current issue. Subjected to sub-critical cyclic loading, the solder can undergo fatigue cracks, leading to the failure of the whole system after a certain number of power cycles. In this paper, a model for describing the viscoplastic behavior of the solder material under power cycling is implemented in the finite element code Abaqus and a continuum damage procedure is used for lifetime prediction. Damage initiation criterion and damage evolution law, based both on the inelastic strain energy per stabilized cycle as proposed by Darveaux, are used in conjunction with the direct cyclic procedure available in Abaqus. This latter technique allows reducing the considerable computation time needed to obtain the stabilized states during the repetitive loading cycles.


Corresponding author

* Corresponding author (


Hide All
1.Anand, L., “Constitutive Equations for Hot Working of Metals,” International Journal of Plasticity, 1, pp. 213231 (1985).
2.Brown, S. B., Kim, K. H. and Anand, L., “An Internal Variable Constitutive Model for Hot Working of Metals,” International Journal of Plasticity, 5, pp. 95130 (1989).
3.Garofalo, F., “An Empirical Relation Defining the Stress Dependence of Minimum Creep Rate in Metals,” Transactions of the Metallurgical Society of AIME, 227, pp. 351356 (1963).
4.Wang, G. Z., Cheng, Z. N., Becker, K. and Wilde, J., “Applying Anand Model to Represent the Visco-plastic Deformation Behavior of Solder Alloys,” Journal of Electronic Packaging, 123, pp. 247253 (2001).
5.Manson, S. S., “Behavior of Materials Under Conditions of Thermal Stress,” Technical Report TN 2933, NACA (1953).
6.Coffin, L. F., “A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal,” Transactions of ASME, 76, pp. 931950 (1954).
7.Du, Z. Z., Wang, J. and Fan, X., “Direct Cyclic Method for Solder Joint Reliability Analysis,” Proceedings of the International Mechanical Engineering Congress and Exposition, USA (2006).
8.Darveaux, R., “Effect of Simulation Methodology on Solder Joint Crack Growth Correlation and Fatigue Life Prediction,” Journal of Electronic Packaging, 124, pp. 147154 (2002).
9.Lau, J., Pan, S. and Chang, C., “A New Thermal-Fatigue Life Prediction Model for Wafer Level Chip Scale Package Solder Joints,” Journal of Electronic Packaging, 124, pp. 212220 (2002).
10.Hillerborg, A., Modeer, M. and Peterson, P. E., “Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements,” Cement and Concrete Research, 6, pp. 773782 (1976).
11.Motalab, M., “A Constitutive Model for Lead Free Solder Including Aging Effects and its Application to Microelectronic Packaging,” Doctoral Dissertation, Auburn University, Alabama, USA (2013).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed