Skip to main content Accessibility help

A Study of Parallel Efficiency of Modified Direct Algorithm Applied to Thermohydrodynamic Lubrication

  • N. Wang (a1), C.-M. Tsai (a1) and K.-C. Cha (a1)


This study examines the parallel computing as a means to minimize the execution time in the optimization applied to thermohydrodynamic (THD) lubrication. The objective of the optimization is to maximize the load capacity of a slider bearing with two design variables. A global optimization method, DIviding RECTangle (DIRECT) algorithm, is used. The first approach was to apply the parallel computing within the THD model in a shared-memory processing (SMP) environment to examine the parallel efficiency of fine-grain computation. Next, a distributed parallel computing in the search level was conducted by use of the standard DIRECT algorithm. Then, the algorithm is modified to provide a version suitable for effective parallel computing. In the latter coarse-grain computation the speedups obtained by the DIRECT algorithms are compared with some previous studies using other parallel optimization methods. In the fine-grain computation of the SMP machine, the communication and overhead time costs prohibit high speedup in the cases of four or more simultaneous threads. It is found that the standard DIRECT algorithm is an efficient sequential but less parallel-computing-friendly method. When the modified algorithm is used in the slider bearing optimization, a parallel efficiency of 96.3% is obtained in the 16-computing-node cluster. This study presents the modified DIRECT algorithm, an efficient parallel search method, for general engineering optimization problems.


Corresponding author

*Professor, corresponding author
**Ph.D. student
***Assistant Professor


Hide All
1.Liu, J.-L. and Chen, J.-L., “Intelligent Genetic Algorithm with Gradient-Based Local Search Applied to Supersonic Wing Planform Optimization,” Journal of Mechanics, 23, pp. 285293 (2007).
2.Chang, C.-K. and Cheng, J.-H., “Optimization of Sandwich Monocoque Car Body with Equivalent Shell Element,” Journal of Mechanics, 23, pp. 381387 (2007).
3.Shyu, S.-H., Jeng, Y.-R. and Li, F., “A Legendre Collocation Method for Thermohydrodynamic Journal-Bearing Problems with Elrod's Cavitation Algorithm,” Tribology International, 41, pp. 493501 (2008).
4.Nagaraju, T., Sharma, S. C. and Jain, S. C., “Influence of Surface Roughness on Non-Newtonian Thermohydrostatic Performance of a Hole-Entry Hybrid Journal Bearing,” Journal of Tribology, 129, pp. 595602 (2007).
5.Wang, N. and Tsai, C.-M., “Application of Thread-Level Parallel programming to Thermohydrodynamic Lubrication Computation,” Tribology Transactions, 49, pp. 473481 (2006).
6.Shyu, S.-H., Jeng, Y.-R. and Chang, C.-C., “Load Capacity for Adiabatic Finite-Width Plane Slider Bearings in the Turbulent Thermohydrodynamic Regime,” Tribology Transactions, 49, pp. 2632 (2006).
7.Yang, P. and Yang, P., “Analysis on the Thermal Elastohydrodynamic Lubrication of Tapered Rollers in Opposite Orientation,” Tribology International, 40, pp. 16271637 (2007).
8.Chen, H. and Chen, D., “Frequency-Domain Analysis of Non-Newtonian Fluid Behavior in Head-Disk Interface Lubrication,” Tribology International, 40, pp. 239245 (2007).
9.Yang, Y.-J., Kang, C.-Y. and Lee, C.-K., “Optimization of Piezoelectric Transformers Using Genetic Algorithm,” Journal of Mechanics, 24, pp. 119125 (2008)
10.Chang, Y.-C. and Chiu, M.-C., “Shape Optimization of One-chamber Cross-flow Mufflers by GA Optimization,” Journal of Mechanics, 24, pp. 1329 (2008).
11.Zhu, H. and Bogy, D. B., “DIRECT Algorithm and Its Application to Slider Air-Bearing Surface Optimization,” IEEE Transactions on Magnetics, 38, pp. 21682170 (2002).
12.Zhu, H. and Bogy, D. B., “Hard Disk Drive Air Bearing Design: Modified DIRECT Algorithm and Its Application to Slider Air Bearing Surface Optimization,” Tribology International, 37, pp. 193201 (2004).
13.Wang, N., “A Parallel Computing Application of the Genetic Algorithm for Lubrication Optimization,” Tribology Letters, 18, pp. 105112 (2005).
14.Wang, N. and Chen, L.-W., “A Divide-and-Conquer Parallel Computing Scheme for the Optimization Analysis of Tribological Systems,” Tribology Transactions, 47, pp. 313320 (2004).
15.Wang, N. and Seireg, A. A., “Thermohydrodynamic Analysis Incorporating Thermal Expansion Across the Film,” Journal of Tribology, 116, pp. 681689 (1994).
16.Jones, D. R., Encyclopedia of Optimization, Kluwer, Norwell, MA, pp. 431–440 (2001).
17.Wang, N. and Yen, M.-L., “A Parametric Study of an Open Source Distributed Computing Environment for Tribological Studies,” Tribology Transactions, 48, pp. 18 (2005).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Mechanics
  • ISSN: 1727-7191
  • EISSN: 1811-8216
  • URL: /core/journals/journal-of-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed