Skip to main content
×
×
Home

A comparison of the nutrient intake of a community-dwelling first-episode psychosis cohort, aged 19–64 years, with data from the UK population

  • Kevin Williamson (a1), Karen Kilner (a2) and Nicola Clibbens (a3)
Abstract

Psychosis increases the risk of CVD, obesity and type 2 diabetes and reduces life expectancy. There are limited data comparing the dietary habits of community-dwelling first-episode psychosis sufferers – with autonomy over diet – and the general population. The data represent the retrospective evaluation of nutritional data collected between 2007 and 2013 from 143 individuals from the UK population receiving treatment for first-episode psychosis. Differences in mean nutrient intakes between the study cohort and the national sample were tested for statistical significance using independent t tests, incorporating Satterthwaite's correction where required. Mean total energy intake was lower for males (P = 0·049) and higher for females (P = 0·016) in the cohort than in the corresponding subgroups of the national sample. Females in the study cohort consumed 12·9 (95 % CI 4·3, 21·5) g more total fat per d, whilst males consumed 7·7 (95 % CI 0·5, 14·9) g less protein per d than the national sample. Males in the study also showed significantly lower mean intakes than nationally of folate, Fe, Se, vitamin D and Zn, but not vitamin C. The proportion of individuals not meeting the lower reference nutrient intakes, particularly for Se (males 54·0 % and females 57·1 %) and for Fe amongst females (29·6 %), is cause for concern regarding potentially severe deficiencies. Further exploration of dietary habits within first-episode psychosis is warranted to assess whether individuals make beneficial dietary changes for their physical and mental health and wellbeing following dietary change intervention. It would also be pertinent to assess any correlation between diet and mental health symptomology.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A comparison of the nutrient intake of a community-dwelling first-episode psychosis cohort, aged 19–64 years, with data from the UK population
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A comparison of the nutrient intake of a community-dwelling first-episode psychosis cohort, aged 19–64 years, with data from the UK population
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A comparison of the nutrient intake of a community-dwelling first-episode psychosis cohort, aged 19–64 years, with data from the UK population
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
* Corresponding author: K. Williamson, fax +44 114 3277757, email williamson_ke81@hotmail.com
References
Hide All
1. Brown, S, Birtwistle, J, Roe, L, et al. (1999) The unhealthy lifestyle of people with schizophrenia. Psychol Med 29, 697701.
2. Hennekens, CH, Hennekens, AR, Hollar, DH, et al. (2005) Schizophrenia and increased risks of cardiovascular disease. Am Heart J 150, 11151121.
3. Filik, R, Sipos, A, Kehoe, PG, et al. (2006) The cardiovascular and respiratory health of people with schizophrenia. Acta Psychiatr Scand 113, 298305.
4. Wildgust, HJ, Hodgson, R & Beary, M (2010) The paradox of premature mortality in schizophrenia: new research questions. J Psychopharmacol 24, Suppl., 915.
5. Lambert, TJ, Feiler, G & Pantelis, C (2010) Cardiometabolic health behaviours of community-treated patients with psychosis. Schizophr Res 117, 527528.
6. Chang, C-K, Hayes, RD, Perera, G, et al. (2011) Life expectancy at birth for people with serious mental illness and other major disorders from a secondary mental health care case register in London. PLoS ONE 6, e19590.
7. Lawrence, D, Hancock, KJ & Kisely, S (2013) The gap in life expectancy from preventable physical illness in psychiatric patients in Western Australia: retrospective analysis of population based registers. BMJ 346, f2539.
8. World Health Organization (2007) International Statistical Classification of Diseases and Related Health Problems, Clinical Descriptions and Diagnostic Guidelines, 10th revision. Geneva: WHO.
9. Cooper, B (2005) Schizophrenia, social class and immigrant status: the epidemiological evidence. Epidemiol Psichiatr Soc 14, 137144.
10. Mangalore, R, Knapp, M & Jenkins, R (2007) Income-related inequality in mental health in Britain: the concentration index approach. Psychol Med 37, 10371045.
11. Weiser, M, Knobler, H, Lubin, G, et al. (2004) Body mass index and future schizophrenia in Israeli male adolescents. J Clin Psychiatr 65, 15461549.
12. Strassnig, M, Miewald, J, Keshavan, M, et al. (2007) Weight gain in newly diagnosed first-episode psychosis patients and healthy comparisons: one-year analysis. Schizophr Res 93, 9098.
13. Galletly, CA, Foley, DL, Waterreus, A, et al. (2012) Cardiometabolic risk factors in people with psychotic disorders: the second Australian National Survey of Psychosis. Austr NZ J Psychiatry 46, 753761.
14. Dipasquale, S, Pariante, CM, Dazzan, P, et al. (2013) The dietary pattern of patients with a schizophrenia: a systematic review. J Psychiatr Res 47, 197207.
15. Ryan, MC, Collins, P & Thakore, JH (2003) Impaired fasting glucose tolerance in first-episode, drug-naive patients with schizophrenia. Am J Psychiatry 160, 284289.
16. Ryan, MC, Flanagan, S, Kinsella, U, et al. (2004) The effects of atypical antipsychotics on visceral fat distribution in first episode, drug-naïve patients with schizophrenia. Life Sci 74, 19992008.
17. Hepgul, N, Aas, M, Murri, MB, et al. (2011) The role of stress and inflammation in diet and metabolic status in first-episode psychosis. Eur Neuropsychopharm 21, S87.
18. Samele, C, Patel, M, Boydell, J, et al. (2007) Physical illness and lifestyle risk factors in people with their first presentation of psychosis. Soc Psychiatry Psychiatr Epidemiol 42, 117124.
19. Simonelli-Munoz, AJ, Fortea, MI, Salorio, P, et al. (2012) Dietary habits of patients with schizophrenia: a self-reported questionnaire survey. Int J M Health Nurs 21, 220228.
20. Zimmermann, U, Kraus, T, Himmerich, H, et al. (2003) Epidemiology, implications and mechanisms underlying drug-induced weight gain in psychiatric patients. J Psychiatr Res 37, 193220.
21. Jensen, GL (2008) Drug-induced hyperphagia: what can we learn from psychiatric medications? JPEN-Parenter Enter 32, 578581.
22. Pouzet, B, Mow, T, Kreilgaard, M, et al. (2003) Chronic treatment with antipsychotics in rats as a model for antipsychotic-induced weight gain in human. Pharmacol Biochem Behav 75, 133140.
23. Arjona, AA, Zhang, SX, Adamson, B, et al. (2004) An animal model of antipsychotic-induced weight gain. Behav Brain Res 152, 121127.
24. Cope, MB, Nagy, TR, Fernandez, JR, et al. (2005) Antipsychotic drug-induced weight gain: development of an animal model. Int J Obes 29, 607614.
25. Kalinichev, M, Rourke, C, Daniels, AJ, et al. (2005) Characterisation of olanzapine-induced weight gain and effect of aripiprazole vs olanzapine on body weight and prolactin secretion in female rats. Psychopharmacology 182, 220231.
26. Stefanidis, A, Verty, ANA, Allen, AM, et al. (2009) The role of thermogenesis in antipsychotic drug-induced weight gain. Obesity 17, 1624.
27. Cooper, GD, Goudie, AJ & Halford, JC (2010) Acute effects of olanzapine on behavioural expression including the behavioural satiety sequence in female rats. J Psychopharmacol 24, 10691078.
28. Cooper, GD, Pickavance, LC, Wilding, JPH, et al. (2007) Effects of Olanzapine in male rats: enhanced adiposity in the absence of hyperphagia, weight gain or metabolic abnormalities. J Psychopharmacol 21, 405413.
29. Kaplan, BJ & Leung, B (2011) Micronutrient treatment of mental disorders. J Integr Med 10, 3239.
30. Bottiglieri, T, Laundy, M, Crellin, R, et al. (2000) Homocysteine, folate, methylation, and monoamine metabolism in depression. J Neurol Neurosurg Psychiatry 69, 228232.
31. Miller, AL (2008) The methylation, neurotransmitter, and antioxidant connections between folate and depression. Altern Med Rev 13, 216226.
32. Harms, LR, Burne, THJ, Eyles, DW, et al. (2011) Vitamin D and the brain. Best Pract Res Clin Endocrinol 25, 657669.
33. Kalueff, AV, Eremin, KO & Tuohimaa, P (2004) Mechanisms of neuroprotective action of vitamin D3 . Biochemistry – Moscow 69, 738741.
34. Schneider, B, Weber, B, Frensch, A, et al. (2000) Vitamin D in schizophrenia, major depression and alcoholism. J Neural Transm 107, 839842.
35. Partti, K, Heliovaara, M, Impivaara, O, et al. (2010) Skeletal status in psychotic disorders: a population-based study. Psychosom Med 72, 933940.
36. Gracious, BL, Finucane, TL, Friedman-Campbell, M, et al. (2012) Vitamin D deficiency and psychotic features in mentally ill adolescents: a cross-sectional study. BMC Psychiatr 12, 38.
37. Tolpannen, A-M, Sayers, A, Fraser, WD, et al. (2012) Serum 25-hydroxyvitamin D3 and D2 and non-clinical psychotic experiences in childhood. PLOS ONE 7 e41575.
38. Eklund, M, Leufstadius, C & Bejerholm, U (2009) Time use among people with psychiatric disabilities: implications for practice. Psychiatr Rehabil J 32, 177191.
39. Mahadik, SP & Gowda, S (1996) Antioxidants in the treatment of schizophrenia. Drugs Today 32, 553565.
40. Yao, JK & Reddy, R (2011) Oxidative stress in schizophrenia: pathogenic and therapeutic implications. Antioxid Redox Sign 15, 19992002.
41. Zhang, XY, Chen, DC, Xiu, MH, et al. (2012) Plasma total antioxidant status and cognitive impairments in schizophrenia. Schizophr Res 139, 6672.
42. Lohr, JB & Browning, JA (1995) Free radical involvement in neuropsychiatric illnesses. Psychopharmacol Bull 31, 159165.
43. Benton, D (2002) Selenium intake, mood, and other aspects of psychological functioning. Nutr Neurosci 5, 363374.
44. Uma Devi, P, Chinnaswamy, P, Murugan, S, et al. (2008) Plasma levels of trace elements in patients with different symptoms of Schizophrenia. Biosci Biotech Res – Asia 5, 261268.
45. Department of Health (2012) National Diet and Nutrition Survey: Headline results from Years 1, 2 and 3 (combined) of the Rolling Programme (2008/2009–2010/11) [Bates, B, Lennox, A, Prentice, A, Bates, C and Swan, G, editors]. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/207708/NDNS-Y3-report_All-TEXT-docs-combined.pdf
46. Department of Health (1991) Report on Health and Social Subjects 41. Dietary Reference Values for Food Energy and Nutrients for the United Kingdom. Committee on Medical Aspects of Food Policy. London: HMSO.
47. Pearce, SHS & Cheetham, TD (2010) Diagnosis and management of vitamin D deficiency. BMJ 340, b5664.
48. Habhab, S, Sheldon, JP & Loeb, RC (2008) The relationship between stress, dietary restraint, and food preferences in women. Appetite 52, 437444.
49. Gibson, EL (2012) The psychobiology of comfort eating: implications for neuropharmacological interventions. Behav Pharmacol 23, 442460.
50. Akhtar, S, Kelly, C, Gallagher, A, et al. (2004) Newer antipsychotic agents, carbohydrate metabolism and cardiovascular risk. Br J Diab Vasc Dis 4, 303309.
51. Strassnig, M, Brar, JS & Ganguli, R (2003) Nutritional assessment of patients with schizophrenia: a preliminary study. Schizophr Bull 29, 393397.
52. Henderson, DC, Borba, CP, Daley, TB, et al. (2006) Dietary intake of patients with schizophrenia. Ann Clin Psychiatr 18, 99105.
53. Stokes, C & Peet, M (2004) Dietary sugar and polyunsaturated fatty acid composition as predictors of severity of schizophrenia symptoms. Nutr Neurosci 7, 247249.
54. Malik, VS, Popkin, BM, Bray, GA, et al. (2010) Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes. Diab Care 33, 24772483.
55. Aeberli, I, Gerber, PA, Hochuli, M, et al. (2011) Low to moderate sugar-sweetened beverage consumption impairs glucose and lipid metabolism and promotes inflammation in healthy young men: a randomized controlled trial. Am J Clin Nutr 94, 479495.
56. Liu, S, Willett, WC, Stampfler, MJ, et al. (2000) A prospective study of dietary glycaemic load, carbohydrate intake, and risk of coronary heart disease in US women. Am J Clin Nutr 71, 14551461.
57. Fried, SK & Rao, SP (2003) Sugars, hypertriglyceridaemia and cardiovascular disease. Am J Clin Nutr 78, Suppl., 873S880S.
58. Osborn, DP, Nazareth, I & King, MB (2007) Physical activity, dietary habits and coronary heart disease risk factor knowledge amongst severe mental health illness: a cross-sectional comparative study in primary care. Soc Psych Psychiatr Epidemiol 42, 787793.
59. Henderson, DC (2008) Managing weight gain and metabolic issues in patients treated with atypical antipsychotics. J Clin Psychiatr 69, 2, e04.
60. Pramyothin, P & Khaodhiar, L (2010) Metabolic syndrome with the atypical antipsychotics. Curr Opin Endocrin Diab 17, 460466.
61. Megna, JL, Schwartz, TL, Siddiqui, UA, et al. (2011) Obesity in adults with serious and persistent mental illness: a review of postulated mechanisms and current interventions. Ann Clin Psychiatry 23, 131140.
62. Pallanti, S, Cantisani, A & Grassi, G (2013) Anxiety as a core aspect of schizophrenia. Curr Psychiatr Rep 15, 354.
63. Konttinen, H, Sarlio-Lähteenkorvaa, S, Silventoinena, K, et al. (2012) Socio-economic disparities in the consumption of vegetables, fruit and energy-dense foods: the role of motive priorities. Public Health Nutr 16, 873882.
64. Caraher, M, Dixon, P, Lang, T, et al. (1999) The state of cooking in England: the relationship of cooking skills to food choice. Br Food J 101, 590609.
65. Asp, E (1999) Factors affecting food decisions made by individual consumers. Food Policy 24, 287294.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Nutritional Science
  • ISSN: 2048-6790
  • EISSN: 2048-6790
  • URL: /core/journals/journal-of-nutritional-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed